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In 1654 Pascal and Fermat worked together to solve the problem of
the points 1 and in so doing developed an early theory for deductive 1 Suppose two players A and B each

contribute an equal amount of money
into a prize pot. A and B then agree
to play repeated rounds of a game
of chance, with the players having
an equal probability of winning any
round, until one of the players has won
k rounds. The player that first reaches k
wins takes the entirety of the prize pot.
Now, suppose the game is interrupted
with neither player reaching k wins.
If A has wA wins and B has wB wins,
what’s a fair way to split the pot?

reasoning with direct probabilities. Thirty years later, Jacob Bernoulli
worked to extend probability theory to solve inductive problems.
He recognized that unlike in games of chance, it was futile to a priori
enumerate possible cases and find out "how much more easily can
some occur than the others":

But, who from among the mortals will be able to determine, for exam-
ple, the number of diseases, that is, the same number of cases which
at each age invade the innumerable parts of the human body and can
bring about our death; and how much easier one disease (for example,
the plague) can kill a man than another one (for example, rabies; or,
the rabies than fever), so that we would be able to conjecture about
the future state of life or death? And who will count the innumerable
cases of changes to which the air is subjected each day so as to form
a conjecture about its state in a month, to say nothing about a year?
Again, who knows the nature of the human mind or the admirable
fabric of our body shrewdly enough for daring to determine the cases
in which one or another participant can gain victory or be ruined in
games completely or partly depending on acumen or agility of body?
(Bernoulli, 1713, p. 18)

See Dale (1991) for a detailed history of
inverse probabilityThe way forward, he reasoned, was to determine probabilities a poste-

riori

Here, however, another way for attaining the desired is really opening
for us. And, what we are not given to derive a priori, we at least can
obtain a posteriori, that is, can extract it from a repeated observation of
the results of similar examples. (Bernoulli, 1713, p. 18)

To establish the validity of the approach, Bernoulli proved a version
of the law of large numbers for the binomial distribution. Let Xn

represent a sample from a Bernoulli distribution with parameter
r/t (r and t integers). Then if c represents some positive integer,
Bernoulli showed that for N large enough In other words, the probability the

sampled ratio from a binomial distri-
bution is contained within the bounds
r−1

t to r+1
t is at least c times more likely

than the the probability it is outside the
bounds

P
(
|X1 + · · ·+ XN

N
− r

t
| < 2

t

)
> c · P

(
|X1 + · · ·+ XN

N
− r

t
| > 2

t

)
.

Thus, by taking enough samples from a binomial, "we determine the
[parameter] a posteriori almost as though it was known to us a prior".

Bernoulli, additionally, derived lower bounds, given r and t, for
how many samples would be needed to achieve a desired levels of
accuracy. For example, if r = 30 and t = 50, he showed
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having made 25550 experiments, it will be more than a thousand times
more likely that the ratio of the number of obtained fertile observations
to their total number is contained within the limits 31/50 and 29/50

rather than beyond them (Bernoulli, 1713, p. 30)

This suggested an approach to inference, but it came up short in sev-
eral respects. 1) The bounds derived were conditional on knowledge
of the true parameter. It didn’t provide a way to quantify uncertainty
when the parameter was unknown. And 2) the number of experi-
ments required to reach a high level of confidence in an estimate,
moral certainty in Bernoulli’s words, was quite large, limiting the
approach’s practicality. Abraham de Moivre would later improve "moral certain is that whose probability

is almost equal to complete certainty
so that the difference is insensible."
(Bernoulli, 1713, p. 9)

on Bernoulli’s work in his highly popular textbook The Doctrine of
Chances. He derive considerably tighter bounds, but again failed
to provide a way to quantify uncertainty when the binomial dis-
tribution’s parameter was unknown, offering only this qualitative
guidance

if after taking a great number of Experiments, it should be perceived
that the happenings and failings have been nearly in a certain propor-
tion, such as of 2 to 1, it may safely be concluded that the Probabilities
of happening or failing at any one time assigned will be very near that
proportion, and that the greater the number of Experiments has been,
so much nearer the Truth will the conjectures be that are derived from
them. (De Moivre, 1756, p. 242)

Inspired by de Moivre’s book, Thomas Bayes took up the problem
of inference with the binomial distribution. He reframed the goal to

Given the number of times in which an unknown event has happened
and failed: Required the chance that the probability of its happening
in a single trial lies somewhere between any two degrees of probability
that can be named. (Bayes, 1763, p. 4)

Recognizing that a solution would depend on prior probability, Bayes
sought to give an answer for

the case of an event concerning the probability of which we absolutely
know nothing antecedently to any trials made concerning it (Bayes,
1763, p. 11)

He reasoned (incorrectly) that knowing nothing was equivalent to a
uniform prior distribution 2. Using the uniform prior and a geomet- 2 See (Stigler, 1990, p. 184–188) for a

detailed account of Bayes’ reasoning.ric analogy with balls, Bayes succeeded in approximating integrals of
posterior distributions of the form

Γ(n + 2)
Γ(y + 1)Γ(n− y + 1)

∫ b

a
θy(1− θ)n−ydθ

and was able to answer questions like "if I observe y success and
n− y failures from a binomial distribution with unknown parameter
θ, what is the probability that θ is between a and b?".
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Despite Bayes’ success answering inferential questions, his method
was not widely adopted and his work, published posthumously
in 1763, remained obscure up until De Morgan renewed attention
to it over fifty years later. A major obstacle was Bayes’ geometric
treatment of integration; as mathematical historian Stephen Stigler
writes,

Bayes essay ’Towards solving a problem in the doctrine of chances’ is
extremely difficult to read today–even when we know what to look for.
(Stigler, 1990, p. 179)

A decade after Bayes’ death and likely unaware of his discoveries,
Laplace pursued similar problems and independently arrive at the
same approach. Laplace revisited the famous problem of the points,
but this time considered the case of a skilled game where the prob-
ability of a player winning a round was modeled by a Bernoulli dis-
tribution with unknown parameter p. Like Bayes, Laplace assumed a
uniform prior, noting only

because the probability that A will win a point is unknown, we may
suppose it to be any unspecified number whatever between 0 and 1.
(Laplace, 1774)

Unlike Bayes, though, Laplace did not use a geometric approach. He
approached the problems with a much more developed analytical
toolbox and was able to derive more usable formulas with integrals
and clearer notation.

Following Laplace and up until the early 20th century, using a uni-
form prior together with Bayes’ theorem became a popular approach
to statistical inference. In 1837, De Morgan introduced the term in-
verse probability to refer to such methods and acknowledged Bayes’
earlier work

De Moivre, nevertheless, did not discover the inverse method. This was
first used by the Rev. T. Bayes, in Phil. Trans. liii. 370.; and the author,
though now almost forgotten, deserves the most honourable remem-
berance from all who read the history of this science. (De Morgan,
1838, p. vii)

In the early 20th century, inverse probability came under se-
rious attack for its use of a uniform prior. Ronald Fisher, one of the
fiercest critics, wrote Fisher was not the first to criticize

inverse probability, and he references
the earlier works of Boole, Venn, and
Chrystal. See Zabell (1989) for a de-
tailed account of inverse probability
criticism leading up to Fisher.

I know only one case in mathematics of a doctrine which has been
accepted and developed by the most eminent men of their time, and
is now perhaps accepted by men now living, which at the same time
has appeared to a succession of sound writers to be fundamentally
false and devoid of foundation. Yet that is quite exactly the position in
respect of inverse probability (Fisher, 1930)
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Fisher criticized inverse probability as "extremely arbitrary". Re-
viewing Bayes’ essay, he pointed out how naive use of a uniform
prior leads to solutions that depend on the scale used to measure
probability. He gave a concrete example (Fisher, 1922): Let p denote
the unknown parameter for a binomial distribution. Suppose that
instead of p we parameterize by

θ = arcsin (2p− 1) , −π

2
≤ θ ≤ π

2
,

- /2 /20

1 p

Figure 1: Fisher’s alternate parame-
terization for the probability of the
binomial distribution.

and apply the uniform prior. Then the probability that θ is between a
and b after observing S successes and F failures is

1
π

∫ b

a

(
sin θ + 1

2

)S (1− sin θ

2

)F
dθ.

A change of variables back to p shows us this is equivalent to

1
π

∫ (sin b+1)/2

(sin a+1)/2
(p)S−1/2 (1− p)F−1/2 dp.

Hence, the uniform prior in θ is equivalent to the prior 1
π p−1/2(1−

p)−1/2 in p. As an alternative to inverse probability, Fisher promoted
maximum likelihood methods, p-values, and a frequentist definition
for probability.

While Fisher and others advocated for abandoning inverse proba-
bility in favor of frequentist methods, Harold Jeffreys worked to put
inverse probability on a firmer foundation. He acknowledged pre-
vious approaches to inverse probability had lacked consistency, but
he agreed with their goal of delivering statistical results in terms of
degree of belief and thought frequentist definitions of probability to
be hopelessly flawed:

frequentist definitions themselves lead to no results of the kind that
we need until the notion of reasonable degree of belief is reintroduced,
and that since the whole purpose of these definitions is to avoid this
notion they necessarily fail in their object. (Jeffreys, 1961, p. 34)

Jeffreys pointed out that inverse probability needn’t be tied to the
uniform prior:

There is no more need for [the idea that the uniform distribution of
the prior probability was a necessary part of the principle of inverse
probability] than there is to say that an oven that has once cooked roast
beef can never cook anything but roast beef. (Jeffreys, 1961, p. 103)

Seeking to achieve results that would be consistent under reparame-
terizations, Jeffreys proposed priors based on the Fisher information
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matrix,

π(θ) ∝ |I(θ)|1/2

I(θ)st = Ey

{(
∂

∂θs
log P(y | θ)

)(
∂

∂θt
log P(y | θ)

)
| θ

}
,

writing 3
3 Unlike the uniform prior, Jeffreys prior
is invariant to reparameterization. If Θ
denotes a region of the parameter space
and φ(u) is an injective continuous
function whose range includes Θ,
then applying the change-of-variables
formula will show that∫

Θ
P(y | θ)|I(θ)|1/2dθ =∫

φ−1(Θ)
P(y | φ(u))|Iφ(u))|1/2du,

where Iφ denotes the Fisher informa-
tion with respect to the reparameteriza-
tion.

If we took the prior probability density for the parameters to be pro-
portional to [|I(θ)|1/2] ... any arbitrariness in the choice of the pa-
rameters could make no difference to the results, and it is proved that
for this wide class of laws a consistent theory of probability can be
constructed. (Jeffreys, 1961, p. 159)

Twenty years later, Welch and Peers (1963) investigated priors from
a different perspective. They analyzed one-tailed credible sets from
posterior distributions and asked how closely probability mass cov-
erage matched frequentist coverage. They found that for the case of
a single parameter 4, the prior Jeffreys proposed was asymptotically 4 Deriving good priors in the multi-

parameter case is considerably more
involved. Jeffreys himself was dissatis-
fied with the prior his rule produced for
multi-parameter models and proposed
an alternative known as Jeffreys indepen-
dent prior but never developed a rigor-
ous approach. José-Miguel Bernardo
and James Berger would later develop
reference priors as a refinement of Jef-
freys prior. Reference priors provide a
general mechanism to produce good
priors that works for multi-parameter
models and cases where the Fisher
information matrix doesn’t exist. See
(Berger et al., 2009) and (Berger et al.,
2024, part. 3).

optimal, providing further justification for the prior that aligned with
how intuition suggests we might quantify Bayes criterion of "know-
ing absolutely nothing".

In an unfortunate turn of events, mainstream statistics mostly
ignored Jeffreys approach to inverse probability to chase a mirage
5 of objectivity that frequentist methods seemed to provide 6 ; but

5 see Question 4 in Discussion
6 Development of inverse probability in
the manner Jeffreys suggested would
continue under the name Objective
Bayesian Analysis; but it hardly occupies
the center stage of statistics, and many
people mistakenly think of Bayesian
analysis as more of a subjective theory.

much as Jeffreys had anticipated with his criticism that frequentist
definitions of probability couldn’t provide "results of the kind that
we need", a majority of practitioners filled in the blank by misinter-
preting frequentist results as providing belief probabilities. Goodman
(1999) introduced the term P-value fallacy to refer to this common
error and described just how prevalent it is

In my experience teaching many academic physicians, when physi-
cians are presented with a single-sentence summary of a study that
produced a surprising result with P = 0.05, the overwhelming majority
will confidently state that there is a 95% or greater chance that the null
hypothesis is incorrect.

James Berger and Thomas Sellke established theoretical and simula-
tion results that show how spectacularly wrong this notion is

it is shown that actual evidence against a null (as measured, say, by
posterior probability or comparative likelihood) can differ by an order
of magnitude from the P value. For instance, data that yield a P value
of .05, when testing a normal mean, result in a posterior probability of
the null of at least .30 for any objective prior distribution. (Berger and
Sellke, 1987)

They concluded
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for testing "precise" hypotheses, p values should not be used directly,
because they are too easily misinterpreted. The standard approach in
teaching–of stressing the formal definition of a p value while warning
against its misinterpretation–has simply been an abysmal failure.
(Selke et al., 2001)

In this paper, we’ll look closer at how priors for inverse probabil-
ities can be justified by matching coverage; and we’ll reexamine the
problems Bayes and Laplace contemplated to see how they might be
solved with a more modern approach.

Priors and Frequentist Matching

The idea of matching priors intuitively aligns with how we might
think about probability in the absence of prior knowledge. We can
think of the frequentist coverage matching metric as a way to provide
an answer to the question "How accurate are the Bayesian credible
sets produced with a given prior?". For more background on frequentist

coverage matching and its relation to
inverse probability, see Berger et al.
(2022) and (Berger et al., 2024, ch. 5).Consider a probability model with a single parameter θ. If we’re

given a prior, π(θ), how do we test if the prior reasonably expresses
Bayes’ requirement of knowing nothing? Let’s pick a size n, a value
θtrue, and randomly sample observations y = (y1, . . ., yn)⊤ from the
distribution P(·|θtrue). Then let’s compute the two-tailed credible set
[θa, θb] that contains 95% of the probability mass of the posterior,

π(θ | y) ∝ P(y | θ)× π(θ),

and record whether or not the credible set contains θtrue. Now sup-
pose we repeat the experiment many times and vary n and θtrue. If
π(θ) is a good prior, then the fraction of trials where θtrue is con-
tained within the credible set will consistently be close to 95%. 7 7 The coverage experiment expressed as

an algorithm:
function coverage-test(θtrue, α)

cnt ← 0
N ← a large number
for i← 1 to N do

y← sample from P(· | θtrue)

t ←
∫ θtrue
−∞ π(θ | y)dθ

if 1−α
2 < t < 1− 1−α

2 then
cnt ← cnt + 1

end if
end for
return cnt

N
end function

Example 1 Suppose we observe n normally distributed values, y, with
variance 1 and unknown mean, µ. Let’s consider the prior

π(µ) ∝ 1.

(Note: In this case Jeffreys prior and the constant prior in µ are the same.)
Then

P(y | µ) ∝ exp
{
−1

2
(y− µ1)′ (y− µ1)

}
∝ exp

{
−1

2

(
nµ2 − 2µnȳ

)}
∝ exp

{
−n

2
(µ− ȳ)2

}
.
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Thus, ∫ t

−∞
π(µ | y)dµ =

1
2

[
1 + erf

(
t− ȳ√

2/n

)]
.

I ran a 95% coverage test with 10000 trials and various values of µ and n.
As Table 5 shows the results are all close to 95%, indicating the constant
prior is a good choice in this case. [source code for experiment ]

µtrue n = 5 n = 10 n = 20
0.1 0.9502 0.9486 0.9485

0.5 0.9519 0.9478 0.9487

1.0 0.9516 0.9495 0.9519

2.0 0.9514 0.9521 0.9512

5.0 0.9489 0.9455 0.9497

Table 1: Frequentist coverages for the
mean of a normal distribution with
known variance and constant prior.
Values close to 0.95 indicate a good
prior.

Example 2 Now suppose we observe n normally distributed values, y,
with unknown variance and zero mean, µ. Let’s test the constant prior and
Jeffreys’ prior,

πC(σ
2) ∝ 1 and πJ(σ

2) ∝
1
σ2 .

We have

P(y | σ2) ∝
(

1
σ2

)n/2
exp

{
− ns2

2σ2

}
where s2 = y′y

n . Put u = ns2

2σ2 . Then Γ(·) denotes the Gamma function,

Γ(s) =
∫ ∞

0
ts−1 exp(−t)dt,

and Γ(·, ·) denotes the incomplete
Gamma function,

Γ(s, x) =
∫ ∞

x
ts−1 exp(−t)dt.

∫ t

0

(
1
σ2

)n/2
exp

{
− ns2

2σ2

}
dσ2 ∝

∫ ∞

ns2
2t

un/2−2 exp {−u} du

= Γ(
n− 2

2
,

ns2

2t
).

Thus, ∫ t

0
πC(σ

2 | y)dσ2 =
1

Γ( n−2
2 )

Γ(
n− 2

2
,

ns2

2t
).

Similarly, ∫ t

0
πJ(σ

2 | y)dσ2 =
1

Γ( n
2 )

Γ(
n
2

,
ns2

2t
).

Table 2 shows the coverage results for the constant prior. We can see that for
smaller values of σ2

true and n, the coverages are notably smaller than 95%. In
comparison, Jeffreys prior (Table 3) performs well for all values of σ2

true and
n. [source code for experiment ]

σ2
true n = 5 n = 10 n = 20

0.1 0.9014 0.9288 0.9445

0.5 0.9035 0.9309 0.9429

1.0 0.9048 0.9303 0.9417

2.0 0.9079 0.9331 0.9418

5.0 0.9023 0.9295 0.9433

Table 2: Frequentist coverages for
the variance of a zero-mean normal
distribution with the constant prior.

σ2
true n = 5 n = 10 n = 20

0.1 0.9516 0.9503 0.9533

0.5 0.9501 0.9490 0.9537

1.0 0.9505 0.9511 0.9519

2.0 0.9480 0.9514 0.9498

5.0 0.9506 0.9497 0.9507

Table 3: Frequentist coverages for
the variance of a zero-mean normal
distribution with Jeffreys prior.

The Binomial Distribution

Let’s revisit the binomial distribution with a modern approach to
inverse probability.

Suppose we observe n values from the binomial distribution. Let
y denote the number of successes and θ denote the probability of
success. The likelihood function is given by

L(θ; y) ∝ θy(1− θ)n−y.

https://github.com/rnburn/bbai/blob/master/example/09-coverage-simulations.ipynb
https://github.com/rnburn/bbai/blob/master/example/09-coverage-simulations.ipynb
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Taking the log and differentiating, we have

∂

∂θ
log L(θ; y) =

y
θ
− n− y

1− θ

=
y− nθ

θ(1− θ)
.

Thus, the Fisher information for the binomial distribution is 8 8 Here we apply this formula for the
mean of the binomial distribution, nθ,
and the variance, nθ(1− θ).

I(θ) = Ey

{(
∂

∂θ
log L(θ; y)

)2
| θ

}

= Ey

{(
y− nθ

θ(1− θ)

)2
| θ

}

=
nθ(1− θ)

θ2(1− θ)2

=
n

θ(1− θ)
,

and Jeffreys prior is

π(θ) ∝ I(θ)1/2

∝ θ−1/2(1− θ)−1/2.

Normalizing gives us

π(θ) =
1
π

θ−1/2(1− θ)−1/2.

The posterior is then

π(θ | y) ∝ θy−1/2(1− θ)n−y−1/2,

which we can recognize as the beta distribution with parameters
y + 1/2 and n− y + 1/2.

0 0.5 1

0.64

1

3

Laplace prior

Jeffreys prior

Figure 2: Jeffreys prior for binomial
distribution together with the uniform
prior. We can see that Jeffreys prior
distributes more probability mass
towards the extremes 0 and 1.

To test frequentist coverages, we can use an exact algorithm.

function binomial-coverage-test(n, θtrue, α)
cov ← 0
for y← 0 to n do

t ←
∫ θtrue

0 π(θ | y)dθ

if 1−α
2 < t < 1− 1−α

2 then
cov ← cov + (n

y)θ
y
true(1− θtrue)n−y

end if
end for
return cov

end function

The tables below show frequentist coverages for the Bayes-Laplace
uniform prior (left) and Jeffreys prior (right) using various values of
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n and θtrue.

Coverges with Laplace Prior
θtrue n = 5 n = 10 n = 20 n = 100
0.0001 0.0000 0.0000 0.0000 0.0000

0.0010 0.0000 0.0000 0.0000 0.9048

0.0100 0.9510 0.9044 0.8179 0.9206

0.1000 0.9185 0.9298 0.9568 0.9364

0.2500 0.9844 0.9803 0.9348 0.9513

0.5000 0.9375 0.9785 0.9586 0.9431

Coverges with Jeffreys Prior
θtrue n = 5 n = 10 n = 20 n = 100
0.0001 0.9995 0.9990 0.9980 0.9900

0.0010 0.9950 0.9900 0.9802 0.9048

0.0100 0.9510 0.9044 0.9831 0.9816

0.1000 0.9914 0.9872 0.9568 0.9557

0.2500 0.9844 0.9240 0.9348 0.9513

0.5000 0.9375 0.9785 0.9586 0.9431

We can see coverage is identical for many table entries. For smaller
values of n and θtrue, though, the uniform prior gives no coverage
while Jeffreys prior provides decent results. [source code for experi-
ment]

Applications From Bayes and Laplace

Let’s now revisit some applications Bayes and Laplace studied. Given
that the goal in all of these problems is to assign a belief probabil-
ity to an interval, I think that we can make a strong argument that
Jeffreys prior is a better choice than the uniform prior since it has
asymptotically optimal frequentist coverage performance. This also
addresses Fisher’s criticism of arbitrariness.

In each of these problems, I’ll show both the answer given by
Jeffreys prior and the original uniform prior that Bayes and Laplace
used. One theme we’ll see is that many of the results are not that
different. A lot of fuss is often made over minor differences in how
objective priors can be derived, and they can be important; but often
the data dominates and different reasonable choices will lead to
nearly the same result.

Example 3 In an appendix Richard Price added to Bayes’ essay, he consid-
ers the following problem:

Let us then first suppose, of such an event as that called M in the essay, or an TL;DR: Suppose we observe the value
1 from a Bernoulli distribution with
unknown parameter θ. What can we
say about the value of θ?

event about the probability of which, antecedently to trials, we know nothing,
that it has happened once, and that it is enquired what conclusion we may
draw from hence with respct to the probability of it’s happening on a second
trial. (Bayes, 1763, p. 16)

Specifically, Price asks, what’s the probability that θ is greater than 1
2 ?.

Using the uniform prior in Bayes’ essay, we derive the posterior distribution

πB(θ | y) = 2x.

Integrating gives us the answer∫ 1

1
2

2xdx = x2
∣∣∣11

2

=
3
4

.

https://github.com/rnburn/bbai/blob/master/example/15-binomial-coverage.ipynb
https://github.com/rnburn/bbai/blob/master/example/15-binomial-coverage.ipynb
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Using Jeffreys prior, we derive a beta distribution for the posterior,

πJ(θ | y) =
Γ(2)

Γ(3/2)Γ(1/2)
θ1/2(1− θ)−1/2,

and the answer ∫ 1

1
2

πJ(θ | y)dx =
1
2
+

1
π
≈ 0.818

Price then continues with the same problem but supposes we see two 1s,
three 1s, etc. To the right, I show the result for Bayes prior and Jeffreys prior
up to ten 1s. [source code for experiment ]

1s observed
∫ 1

1
2

πB(θ | y)dθ
∫ 1

1
2

πJ(θ | y)dθ

1 0.7500 0.8183

2 0.8750 0.9244

3 0.9375 0.9669

4 0.9688 0.9850

5 0.9844 0.9931

6 0.9922 0.9968

7 0.9961 0.9985

8 0.9980 0.9993

9 0.9990 0.9997

10 0.9995 0.9998

Example 4 Price also considers a lottery with an unknown chance of win-
ning:

Let us then imagine a person present at the drawing of a lottery, who knows
nothing of its scheme or of the proportion of Blanks to Prizes in it. Let it
further be supposed, that he is obliged to infer this from the number of blanks
he hears drawn compared with the number of prizes; and that it is enquired
what conclusions in these circumstances he may reasonably make. (Bayes,
1763, p. 19–20)

He asks this specific question:

Let him first hear ten blanks drawn and one prize, and let it be enquired what
chance he will have for being right if he gussses that the proportion of blanks
to prizes in the lottery lies somewhere between the proportions of 9 to 1 and 11
to 1. (Bayes, 1763, p. 20)

With Bayes prior and θ representing the probability of drawing a blank, we
derive the posterior distribution

πB(θ | y) =
Γ(13)

Γ(11)Γ(2)
θ10(1− θ)1,

and the answer ∫ 11
12

9
10

πB(θ | y)dθ ≈ 0.0770.

Using Jeffreys prior, we get the posterior

πJ(θ | y) =
Γ(12)

Γ(21/2)Γ(3/2)
θ19/2(1− θ)1/2

and the answer ∫ 11
12

9
10

πJ(θ | y)dθ ≈ 0.0804.

Price then considers the same question (what’s the probability that θ lies
between 9

10 and 11
12 ) for difference cases where an observer of the lottery

sees w prizes drawn and 10× w blanks. Table 4 shows some of the possible
results. [source code for experiment ]

Blanks Prizes
∫ 11

12
9
10

πB (θ | y)dθ
∫ 11

12
9
10

πJ (θ | y)dθ

10 1 0.0770 0.0804

20 2 0.1084 0.1107

40 4 0.1527 0.1541

100 10 0.2390 0.2395

1000 100 0.6628 0.6618

Table 4: Bayesian credible sets for the
probability of losing a lottery where
various prizes and blanks are observed

https://github.com/rnburn/bbai/blob/master/example/16-bayes-examples.ipynb
https://github.com/rnburn/bbai/blob/master/example/16-bayes-examples.ipynb
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Example 5 Let’s now turn to a problem that fascinated Laplace and his
contemporaries: The relative birth rate of boys-to-girls. Laplace introduces
the problem as follows:

The consideration of the [influence of past events on the probability of future
events] leads me to speak of births: as this matter is one of the most interesting
in which we are able to apply the Calculus of probabilities, I manage so to treat
with all care owing to its importance, by determining what is, in this case,
the influence of the observed events on those which must take place, and how,
by its multiplying, they uncover for us the true ratio of the possibilities of the
births of a boy and of a girl. (Laplace, 1778, p. 1)

Like Bayes, Laplace approaches the problem using a uniform prior, writing

Boys Girls
∫ 1/2

0 πL (θ | y)dθ
∫ 1/2

0 πJ (θ | y)dθ

0 0 0.5000 0.5000

749 751 0.5206 0.5206

1511 1489 0.3440 0.3440

2263 2237 0.3492 0.3492

3081 2919 0.0182 0.0182

3810 3690 0.0829 0.0829

4514 4486 0.3839 0.3839

5341 5159 0.0379 0.0379

6139 5861 0.0056 0.0056

6792 6708 0.2349 0.2349

7608 7392 0.0389 0.0389

8308 8192 0.1833 0.1832

9145 8855 0.0153 0.0153

9957 9543 0.0015 0.0015

10618 10382 0.0517 0.0517

Table 5: Probability that the birth rate
of boys-to-girls is less than 0.5 for
various samples drawn from a binomial
distribution where the true parameter
is set to B/(B + G) ≈ 0.5097. This
shows how Laplace’s answer could
evolve as more data is collected. I
show probabilities using both Laplace’s
uniform prior and Jeffreys prior. We can
see that the result is nearly the same

When we have nothing given a priori on the possibility of an event, it is neces-
sary to assume all the possibilities, from zero to unity, equally probable; thus,
observation can alone instruct us on the ratio of the births of boys and of girls,
we must, considering the thing only in itself and setting aside the events, to
assume the law of possibility of the births of a boy or of a girl constant from
zero to unity, and to start from this hypothesis into the different problems that
we can propose on this object. (Laplace, 1778, p. 26)

Using data collection from Paris between 1745 and 1770, where 251527
boys and 241945 girls had been born, Laplace asks, what is "the probability
that the possibility of the birth of a boy is equal or less than 1

2 "?
With a uniform prior, B = 251527, G = 241945, and θ representing the

probability that a boy is born, we obtain the posterior

πL(θ | y) =
Γ(B + G + 2)

Γ(B + 1)Γ(G + 1)
θB(1− θ)G

and the answer 9 9 This matches up quite closely with
the answer Laplace gets: "we will have,
for the probability that x is equal or
less than 21 , a fraction of which the
numerator is little different from unity
and equal to 1,1521, and of which the
denominator is the seventh power of
one million",

1.1521/(106)7 = 1.152× 10−42.

∫ 1/2

0
πL(θ | y)dθ ≈ 1.1460× 10−42.

With Jeffreys prior, we similarly derive the posterior

πJ(θ | y) =
Γ(B + G + 1)

Γ(B + 1/2)Γ(G + 1/2)
θB−1/2(1− θ)G−1/2

and answer ∫ 1/2

0
πJ(θ | y)dθ ≈ 1.1458× 10−42.

[source code for experiment ]

Discussion

Q1. Where do inverse probabilities belong in statistics?

https://github.com/rnburn/bbai/blob/master/example/17-laplace-birth-rate.ipynb


introduction to modern inverse probability 12

A1. I think Jeffreys was right and standard statistical procedures
should deliver "results of the kind we need". While Bayes and
Laplace might not have been fully justified in their choice of a
uniform prior, they were correct in their objective of quantifying
results in terms of degree of belief. Inverse probabilities of the
kind Jeffreys outlined give us a pathway to provide "results of the
kind we need" while addressing the arbitrariness of the Bayes-
Laplace approach. Jeffreys approach isn’t the only way to get to
results as degrees of belief, and a more subjective approach can
also be valid if the situation allows, but his approach give us good
answers for the common situation "of an event concerning the
probability of which we absolutely know nothing antecedently
to any trials made concerning it" and can be used as a drop-in
replacement for frequentist methods.

To answer more concretely, I think when you open up a standard
introduction-to-statistics textbook and look up a basic procedure
such as a hypothesis test of whether the mean of normally dis-
tributed data with unknown variance is non-zero, you should see
a method built on objective priors and Bayes factor like Berger and
Mortera (1999) rather than a method based on P values.

Q2. But aren’t there multiple ways of deriving good priors in the absence of
prior knowledge?

A2. I highlighted frequentist coverage matching as a benchmark to
gauge whether a prior is a good candidate for objective analysis,
but coverage matching isn’t the only valid metric we could use
and it may be possible to derive multiple priors with good cov-
erage. Different priors with good frequentist properties, though,
will likely be similar, and any results will be determined more by
observations than the prior. If we are in a situation where multiple
good priors lead to significantly differing results, then that’s an in-
dicator we need to provide subjective input to get a useful answer.
Here’s how Berger (2006) addresses this issue:

Inventing a new criterion for finding “the optimal objective prior”
has proven to be a popular research pastime, and the result is that
many competing priors are now available for many situations. This
multiplicity can be bewildering to the casual user.

I have found the reference prior approach to be the most successful
approach, sometimes complemented by invariance considerations
as well as study of frequentist properties of resulting procedures.
Through such considerations, a particular prior usually emerges
as the clear winner in many scenarios, and can be put forth as the
recommended objective prior for the situation.
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Q3. Doesn’t that make inverse probability subjective, whereas frequentist
methods provide an objective approach to statistics? If the experimeter’s intention was to

flip a coin 17 times, then the probability
of seeing a value less extreme than 13
under the null hypothesis is given by
summing binomial distribution terms
representing the probabilities of getting
5 to 12 heads,(

17
5

)
× 0.517 = 0.047(

17
6

)
× 0.517 = 0.094(

17
7

)
× 0.517 = 0.148(

17
8

)
× 0.517 = 0.185(

17
9

)
× 0.517 = 0.185(

17
10

)
× 0.517 = 0.148(

17
11

)
× 0.517 = 0.094(

17
12

)
× 0.517 = 0.047,

which gives us 0.951 and hence a
P-value of 1− 0.951 = 0.049

If, however, the experimenter’s in-
tention was to continue sampling until
they got at least 4 heads and 4 tails,
then the probability of seeing a value
less extreme than 17 total flips under the
null hypothesis is given by summing
negative binomial distribution terms
representing the probabilities of getting
8 to 16 total observations,

2
(

7
3

)
× 0.58 = 0.273

2
(

8
3

)
× 0.59 = 0.219

2
(

9
3

)
× 0.510 = 0.164

2
(

10
3

)
× 0.511 = 0.117

2
(

11
3

)
× 0.512 = 0.081

2
(

12
3

)
× 0.513 = 0.054

2
(

13
3

)
× 0.514 = 0.035

2
(

14
3

)
× 0.515 = 0.022

2
(

15
3

)
× 0.516 = 0.014,

which gives us 0.979 and a P-value of
1− 0.978 = 0.021

A3. It’s a common misconception that frequentist methods are ob-
jective. Berger and Berry (1988) provides this example to demon-
strate: Suppose we watch a researcher study a coin for bias. We
see the researcher flip the coin 17 times. Heads comes up 13 times
and tails comes up 4 times. Suppose θ represents the probabil-
ity of heads and the researcher is doing a standard P-value test
with the null hypothesis that the coin is not bias, θ = 0.5. What
P-value would they get? We can’t answer this question because the
researcher would get remarkably different results depending on
their experimental intentions. If their intention was to collect 17

sample coin flips, we would get a P-value of 0.049. But if their in-
tention was to continue flipping the coin until at least 4 heads and
4 tails were observed, we would get a P-value of 0.021. The result
is dependent on not just the data but also on the hidden intentions
of the researcher. As Berger and Berry (1988) argue, "objectivity is
not generally possible in statistics and ... standard statistical meth-
ods can produce misleading inferences". [source code for example]

Q4. If subjectivity is unavoidable, why not just use subjective priors?

A4. When subjective input is possible, we should incorporate it. But
we should also acknowledge that Bayes’ "event concerning the
probability of which we absolutely know nothing antecedently" is
an important fundamental problem of inference that needs good
solutions. As Edwin Jaynes writes

To reject the question, [how do we find the prior representing "com-
plete ignorance"?], as some have done, on the grounds that the state
of complete ignorance does not "exist" would be just as absurd as
to reject Euclidean geometry on the grounds that a physical point
does not exist. In the study of inductive inference, the notion of
complete ignorance intrudes itself into the theory just as naturally
and inevitably as the concept of zero in arithmetic.

If one rejects the consideration of complete ignorance on the
grounds that the notion is vague and ill-defined, the reply is that
the notion cannot be evaded in any full theory of inference. So if
it is still ill-defined, then a major and immediate objective must be
to find a precise definition which will agree with intuitive require-
ments and be of constructive use in a mathematical theory. Jaynes
(1968)

Moreover, systematic approaches such as reference priors can cer-
tainly do much better than pseudo-Bayesian techniques such as The term pseudo-Bayesian comes from

Berger (2006). See that paper for a more
detailed discussion.

choosing a uniform prior over a truncated parameter space or a

https://github.com/rnburn/bbai/blob/master/example/14-p-value-objectivity.ipynb
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vague proper prior such as a Gaussian over a region of the param-
eter space that looks interesting. Even when subjective information
is available, using reference priors as building blocks is often the
best way to incorporate it. For instance, if we know that a param-
eter is restricted to a certain range but don’t know anything more,
we can simply adapt a reference prior by restricting and renormal-
izing it (Berger et al., 2024, p. 256)

Conclusion

The common and repeated misinterpretation of statistical results
such as P values or confidence intervals as belief probabilities shows
us that there is a strong natural tendency to want to think about
inference in terms of inverse probability. 10 It’s no wonder that the 10 We don’t have to look hard to find

examples of the P value fallacy. Here’s
one I came across just the other day
reading a book on the history of risk
from a major publisher:

Epidemiologists–the statisti-
cians of health–observe the
same convention as that used
to measure the performance
of investment managers.
They usually define a result
as statistically significant if
there is no more than a 5%
probability that an outcome
was the result of chance.
(Bernstein, 1998, p. 285)

In light of (Berger and Sellke, 1987) and
(Selke et al., 2001), the statement would
be more accurate if we replaced 5%
with 28.9%.

method dominated for 150 years.
Fisher and others were certainly correct to criticize naive use of a

uniform prior as arbitrary, but this is largely addressed by reference
priors and adopting metrics like frequentist matching coverage that
quantify what it means for a prior to represent ignorance. As Berger
puts it,

We would argue that noninformative prior Bayesian analysis is the
single most powerful method of statistical analysis, in the sense of being
the ad hoc method most likely to yield a sensible answer for a given
investment of effort. And the answers so obtained have the added
feature of being, in some sense, the most "objective" statistical answers
obtainable (Berger, 1985, p. 90)

References

Bayes, T. (1763). An essay towards solving a problem in the doctrine
of chances. by the late rev. mr. bayes, f. r. s. communicated by mr.
price, in a letter to john canton, a. m. f. r. s. Philosophical Transactions
of the Royal Society of London 53, 370–418.

Berger, J. (1985). Statistical Decision Theory and Bayesian Analysis.
Springer.

Berger, J. (2006). The case for objective Bayesian analysis. Bayesian
Analysis 1(3), 385–402.

Berger, J., J. Bernardo, and D. Sun (2022). Objective bayesian inference
and its relationship to frequentism.

Berger, J., J. Bernardo, and D. Sun (2024). Objective Bayesian Inference.
World Scientific.



introduction to modern inverse probability 15

Berger, J. and J. Mortera (1999). Default bayes factors for nonnested
hypothesis testing. Journal of the American Statistical Associa-
tion 94(446), 542–554.

Berger, J. and T. Sellke (1987). Testing a point null hypothesis: The
irreconcilability of p values and evidence. Journal of the American
Statistical Association 82(397), 112–22.

Berger, J. O., J. M. Bernardo, and D. Sun (2009). The formal definition
of reference priors. The Annals of Statistics 37(2), 905 – 938.

Berger, J. O. and D. A. Berry (1988). Statistical analysis and the illu-
sion of objectivity. American Scientist 76(2), 159–165.

Bernoulli, J. (1713). On the Law of Large Numbers, Part Four of Ars
Conjectandi. Translated by Oscar Sheynin.

Bernstein, P. (1998). Against the Gods: The Remarkable Story of Risk.
Wiley.

Dale, A. (1991). A History of Inverse Probability: From Thomas Bayes to
Karl Pearson. Springer-Verlag.

De Moivre, A. (1756). The Doctrine of Chances.

De Morgan, A. (1838). An Essay On Probabilities: And On Their Applica-
tion To Life Contingencies And Insurance Offices.

Fisher, R. (1922). On the mathematical foundations of theoretical
statistics. Philosophical Transactions of the Royal Society of London.
Series A, Containing Papers of a Mathematical or Physical Character 222,
309–368.

Fisher, R. (1930). Inverse probability. Mathematical Proceedings of the
Cambridge Philosophical Society 26(4), 528–535.

Goodman, S. (1999, June). Toward evidence-based medical statistics.
1: The p value fallacy. Annals of Internal Medicine 130(12), 995–1004.

Jaynes, E. T. (1968). Prior probabilities. Ieee Transactions on Systems and
Cybernetics (3), 227–241.

Jeffreys, H. (1961). Theory of Probability (3 ed.). Oxford Classic Texts in
the Physical Sciences.

Laplace, P. (1774). Memoir on the probability of the causes of events.
Translated by S. M. Stigler.

Laplace, P. (1778). Mémoire sur les probabilités. Translated by
Richard J. Pulskamp.



introduction to modern inverse probability 16

Selke, T., M. J. Bayarri, and J. Berger (2001). Calibration of p values
for testing precise null hypotheses. The American Statistician 855(1),
62–71.

Stigler, S. (1990). The History of Statistics: The Measurement of Uncer-
tainty before 1900. Belknap Press.

Welch, B. L. and H. W. Peers (1963). On formulae for confidence
points based on integrals of weighted likelihoods. Journal of the
Royal Statistical Society Series B-methodological 25, 318–329.

Zabell, S. (1989). R. A. Fisher on the History of Inverse Probability.
Statistical Science 4(3), 247 – 256.


	Priors and Frequentist Matching
	The Binomial Distribution
	Applications From Bayes and Laplace
	Discussion
	Conclusion

