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Abstract
Berger et al. (2001) and Ren et al. (2012) derived noninformative pri-

ors for Gaussian process models of spatially correlated data using the
reference prior approach (Berger, Bernardo, 1991). The priors have good
statistical properties and provide a basis for objective Bayesian analy-
sis (Berger, 2006). Using a trust-region algorithm for optimization with
exact equations for posterior derivatives and an adaptive sparse grid at
Chebyshev nodes, this paper develops deterministic algorithms for fully
Bayesian prediction and inference with the priors. Implementations of the
algorithms are available at https://github.com/rnburn/bbai.

1 Introduction
Suppose we observe a Gaussian process Z(·) at sample points s1, . . . , sn where

E {Z(s)} = β1x1(s) + · · ·+ βpxp(s)
= β′x(s);

cov {Z(s), Z(u)} = σ2 {ψ`(‖s− u‖) + η} ; (1)

x(·) and ψ`(·) represent the known regressor function and correlation function;
and β, σ2, `, and η represent the unknown regression coefficients, signal variance,
length, and noise-to-signal ratio.

Let θ denote the unknown parameters
(
β, σ2, `, η

)′. To reason about possible
values at unobserved points, we’d like to know the distribution P (Z(u) | y,θtrue)
where u is an unobserved point and y denotes the observations (Z(s1), . . . , Z(sn))′.
Of course, different values of θ could reasonably produce y, so there’s no way we
can identify θtrue or construct prediction distributions exactly. We need ways
to approximate.

Approach 1: Maximize Likelihood
Suppose the likelihood function, L(θ; y) ∝ P (y | θ), is strongly peaked about an
optimum, θml. Then θtrue should be close to θml, and P (Z(u) | y,θml) should
be a reasonable substitute for P (Z(u) | y,θtrue).
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i s y i s y

1 0.00 6.34 11 0.53 2.25
2 0.05 1.62 12 0.58 4.30
3 0.11 7.38 13 0.63 -4.40
4 0.16 12.22 14 0.68 -2.54
5 0.21 3.03 15 0.74 10.94
6 0.26 -4.58 16 0.79 -2.81
7 0.32 -3.45 17 0.84 -2.82
8 0.37 -4.48 18 0.89 2.53
9 0.42 -8.02 19 0.95 10.01
10 0.47 2.61 20 1.00 1.52

Table 1: Randomly sampled data from Gaussian process (2)
.

But what happens if a broad range of parameters could reasonably produce
y?

Example 1.1. [source] Consider the data set from Table 1. I randomly
sampled the Gaussian process (1) with

σ2 = 25, ` = 0.01, η = 0.1, and ψ`(t) = exp
{
− t2

2`2

}
(2)

at 20 evenly spaced points on the interval [0, 1]. Likelihood has a maximum
at

σ2
ml = 34.42, `ml = 0.035, and ηml = 3.82× 10−6.

Note how much smaller ηml is than its true value. If we try to use θml as
a substitute for θtrue, we will get bad results as Figure 1 shows. Put

g(t) = L(θml(1− t) + θtruet; y)/L(θml; y).

g(·) computes the relative likelihood along a line segment from θml to θtrue,
and Figure 2 plots g(t) for 0 ≤ t ≤ 1. Looking at the figure, we can confirm
that likelihood is not strongly peaked about an optimum and any value of
θ along the line segment could have reasonably produced y.

Approach 2: Integrate over Possible Parameters
We saw in Example 1.1 that using maximum likelihood parameters can lead to
poor results when the likelihood function isn’t strongly peaked (Berger et al.,
1999). Instead of approximating prediction distributions with only a single value
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Figure 1: Compare Gaussian process prediction distributions P (Z(0.1) | y,θml)
and P (Z(0.1) | y,θtrue)
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Figure 2: Relative likelihood for different values of θ on the line segment from
θml to θtrue
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of θ, let’s consider every θ and weigh by a posterior distribution, π (θ | y),

Pπ (Z(u) | y) =
∫

P (Z(u) | y,θ)π (θ | y) dθ.

π (θ | y) measures our belief that parameters θ generated the observations y.
To derive π (θ | y), we apply Bayes’ theorem: π (θ | y) ∝ L(θ; y)× π (θ) where
π (θ) measures our prior belief that the model has parameters θ.

Naturally, this leads to the question: How do we specify π (θ) when we
know nothing particular about θ? Statisticians have grappled with the problem
of specifying so-called noninformative priors ever since Bayes and Laplace first
started applying the approach to the binomial model over 200 years ago.

While noninformative priors continue to be debated, fortunately, the modern
approach of reference priors gives a general path forward and, particularly, for
the case of Gaussian processes works quite well.

Before getting into the details (see §3 and §4 for descriptions of the prior
and prediction algorithm), let’s look at how the approach works on the Gaussian
process from Example 1.1.

Example 1.2. [source] (Example 1.1 continued) In Figure 3, I plot the
prediction distribution for the Example 1.1 data set using the Bayesian
approach with a reference prior and compare to the true prediction dis-
tribution. We can see that the Bayesian approach gives a better approx-
imation to the true prediction distribution than the maximum likelihood
approach, Figure 1.

2 How to Specify Noninformative Priors
The goal of a noninformative prior is to represent “minimal information” so that
inference is driven by the data and the model rather than prior knowledge.

Making this goal exact is difficult; and it’s unlikely there will ever be a
universal approach to noninformative priors that’s optimal for all situations, as
there can be multiple reasonable definitions of “minimal information”. However,
frequentist coverage has emerged as one key metric to test whether a candidate
noninformative prior is suitable for objective Bayesian analysis. Here’s the basic
idea: Let Θ1 × · · · × Θk denote the parameter space for the model, pick α to
be something like 0.95, and run Algorithm 1 for different θ̃ varied across the
model’s parameter space. If the prior is good, Algorithm 1 should produce a
result close to α.
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Figure 3: Compare the prediction distribution from the Bayesian approach with

reference prior, Pπ (Z(0.1) | y), to the true prediction distribution
P (Z(0.1) | y,θtrue).

Algorithm 1 Test accuracy of credible sets produced with a prior
1: function coverage-test(θ̃, j, α)
2: cnt ← 0
3: N ← a large number
4: for i← 1 to N do
5: ỹ ← sample from P (· | θ̃)
6: Θ̃ ← Θ1 × · · · ×Θj−1 ×Θj ∩ (−∞, θ̃j ]×Θj+1 × · · · ×Θk

7: t ←
∫
Θ̃ π(θ | ỹ)dθ

8: if α
2 < t < 1− α

2 then
9: cnt ← cnt+ 1

10: end if
11: end for
12: return cnt

N
13: end function

With Algorithm 1 in our toolbox, let’s look at a few approaches for specifying
noninformative priors.

Constant Prior
We begin with the simplest approach: Set π (θ) ∝ 1. Immediately, we see one
serious disadvantage of this approach: It’s not invariant under reparameteri-
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n = 5 n = 10 n = 15 n = 20
σ2 coverage σ2 coverage σ2 coverage σ2 coverage
0.1 0.9502 0.1 0.9486 0.1 0.9508 0.1 0.9493
0.5 0.9519 0.5 0.9478 0.5 0.9492 0.5 0.9488
1.0 0.9516 1.0 0.9495 1.0 0.9517 1.0 0.9494
2.0 0.9514 2.0 0.9521 2.0 0.9539 2.0 0.9489
5.0 0.9489 5.0 0.9455 5.0 0.9558 5.0 0.9488

Table 2: Frequentist coverages for the mean of a normal distribution with known
variance and constant prior.

zation. If ϕ(·) is some strictly increasing function onto [a, b] with continuous
derivative, then ∫ b

a

L(θ; y)dθ =
∫ ϕ−1(b)

ϕ−1(a)
L(ϕ(u); y)ϕ̇(u)du.

Thus, different parameterizations with the constant prior lead to different pos-
terior distributions.

Still, let’s try the approach out on some examples.
Example 2.1. [source] Suppose we observe n normally distributed values,
y, with variance 1 and unknown mean, µ. Then

L(µ; y) ∝ exp
{
−1

2 (y− µ1)′ (y− µ1)
}

∝ exp
{
−1

2
(
nµ2 − 2µnȳ

)}
∝ exp

{
−n2 (µ− ȳ)2

}
.

Thus, ∫ t

−∞
π (µ | y) dµ = 1

2

[
1 + erf

(
t− ȳ√

2/n

)]
.

I ran Algorithm 1 for N = 10,000, α = 0.95, and various values of µ and
n. Table 2 shows the results.

Example 2.2. [source] Suppose we observe n normally distributed val-
ues, y, with zero-mean and unknown variance, σ2. Then L(σ2; y) ∝
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n = 5 n = 10 n = 15 n = 20
σ2 coverage σ2 coverage σ2 coverage σ2 coverage
0.1 0.9014 0.1 0.9288 0.1 0.9418 0.1 0.9439
0.5 0.9035 0.5 0.9309 0.5 0.9415 0.5 0.9398
1.0 0.9048 1.0 0.9303 1.0 0.9404 1.0 0.9412
2.0 0.9079 2.0 0.9331 2.0 0.9402 2.0 0.9393
5.0 0.9023 5.0 0.9295 5.0 0.9339 5.0 0.9426

Table 3: Frequentist coverages for the variance of a normal distribution with
known mean and constant prior.

( 1
σ2

)n/2 exp
{
−ns

2

2σ2

}
where s2 = y′y

n . Put u = ns2

2σ2 . Then

∫ t

0

(
1
σ2

)n/2
exp

{
−ns

2

2σ2

}
dσ2 ∝

∫ ∞
ns2
2t

un/2−2 exp {−u} du

= Γ(n− 2
2 ,

ns2

2t ).

Thus, ∫ t

0
π
(
σ2 | y

)
dσ2 = 1

Γ(n−2
2 )

Γ(n− 2
2 ,

ns2

2t ).

I ran Algorithm 1 for N = 10,000, α = 0.95, and various values of σ2 and
n. Table 3 shows the results.

In Example 2.1, the constant prior produces nearly perfect results. In Ex-
ample 2.2, the prior is notably off for smaller values of n but improves as n
increases.

Jeffreys Prior
Dissatisfied with the inconsistency of the constant prior under reparameteri-
zation, Harold Jeffreys searched for a better approach and proposed the prior
π (θ) ∝ |I(θ)|1/2 where I(θ) is the Fisher information matrix,

I(θ)st = Ey

{(
∂

∂θs
log P (y | θ)

)(
∂

∂θt
log P (y | θ)

)}
.

We can check that unlike the constant prior, Jeffreys prior is invariant to repa-
rameterization: If ϕ(u) is an injective continuously differentiable function whose
range includes Θ and whose Jacobian is never zero on ϕ−1(Θ), then the change
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of variables formula gives us∫
Θ
L(θ; y)|I(θ)|1/2dθ =

∫
ϕ−1(Θ)

L(ϕ(u); y)|I(ϕ(u))|1/2 | (|Dϕ(u)|) | du,

where Dϕ(u) denotes the Jacobian matrix Dϕ(u)st = ∂ϕs(u)
∂ut

. Let Iϕ(u)
denote the Fisher information matrix with respect to the reparameterization.
Then

Iϕ(u)st = Ey

{(
∂

∂us
log P (y | ϕ(u))

)(
∂

∂ut
log P (y | ϕ(u))

)}
= Ey

{(
∇θ log P (y | θ)′ ∂ϕ

∂us
(u)
)(
∇θ log P (y | θ)′ ∂ϕ

∂ut
(u)
)}

=
(
∂ϕ

∂us
(u)
)′

I(ϕ(u))
(
∂ϕ

∂ut
(u)
)
.

Thus, Iϕ(u) = Dϕ(u)′I(ϕ(u))Dϕ(u) and∫
Θ
L(θ; y)|I(θ)|1/2dθ =

∫
ϕ−1(Θ)

L(ϕ(u); y)|Iϕ(u))|1/2du.

Example 2.3. (Example 2.1 continued) To compute the Fisher informa-
tion matrix, we first differentiate logL(µ; y),

∂

∂µ
logL(µ; y) = ∂

∂µ

(
−n2 (µ− ȳ)2

)
= −n (µ− ȳ) .

Then we compute Ey

{(
∂
∂µL(µ; y)

)2
| µ
}

= Ey

{
n2 (µ− ȳ)2 | µ

}
.

ȳ − µ is normally distributed with zero mean and variance 1
n , so

Ey

{(
∂
∂µL(µ; y)

)2
| µ
}

= n. Jeffreys prior in this case is the same as
the constant prior.

Example 2.4. [source] (Example 2.2 continued) We differentiate
logL(σ2; y) to get

∂

∂σ2 logL(σ2; y) = ∂

∂σ2

(
−n2 log σ2 − ns2

2σ2

)
= n

2σ2

(
s2

σ2 − 1
)
.

Now, Ey

{(
∂
∂σ2L(σ2; y)

)2 | σ2
}

=
(
n

2σ2

)2 Ey

{(
s2

σ2 − 1
)2
| σ2

}
and y2

1 +

· · · + y2
n follows a chi-squared distribution and with variance 2nσ4 and
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n = 5 n = 10 n = 15 n = 20
σ2 coverage σ2 coverage σ2 coverage σ2 coverage
0.1 0.9516 0.1 0.9503 0.1 0.9509 0.1 0.9511
0.5 0.9501 0.5 0.949 0.5 0.952 0.5 0.948
1.0 0.9505 1.0 0.9511 1.0 0.9513 1.0 0.95
2.0 0.948 2.0 0.9514 2.0 0.9501 2.0 0.9482
5.0 0.9506 5.0 0.9497 5.0 0.9486 5.0 0.9485

Table 4: Frequentist coverages for the variance of a normal distribution with
known mean and Jeffreys prior.

mean nσ2, so

Ey
{
s4 | σ2} =

σ4 (2n+ n2)
n2

= σ4
(

1 + 2
n

)
and

Ey

{(
∂

∂σ2L(σ2; y)
)2
| σ2

}
=
( n

2σ2

)2
Ey

{
s4

σ4 − 2 s
2

σ2 + 1 | σ2
}

=
( n

2σ2

)2
(

2
n

)
= n

2σ4 .

We derive the prior π
(
σ2) ∝ 1

σ2 . For the CDF, we apply the same deriva-
tions in Example 2.2 to get∫ t

0
π
(
σ2 | y

)
dσ2 = 1

Γ(n2 )Γ(n2 ,
ns2

2t ).

Using the same setup in Example 2.2, I produced the coverages in Table 4.

So far, Jeffreys prior performs excellently. In fact, for a single parameter,
Welch, Peers (1963) show that in the limiting case, coverage for (1− α) % cred-
ible sets using Jeffreys prior approaches α with an asymptotic error o(n−1).
Moreover, it’s the only prior with this property, so starting with the goal of
matching coverage naturally leads us to Jeffreys prior.

Let’s check how well Jeffeys prior performs in cases with more than a single
variable.

Example 2.5. [source] Suppose we observe n normally distributed values,
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y, with unknown mean, µ, and unknown variance, σ2. Then

L(µ, σ2; y) ∝
(

1
σ2

)n/2
exp

{
− 1

2σ2 (y− µ1)′ (y− µ1)
}
.

We differentiate logL(·; y) to get

∂

∂µ
logL(µ, σ2; y) = n

σ2 (ȳ − µ) and

∂

∂σ2 logL(µ, σ2; y) = −n2
1
σ2 + 1

2

(
1
σ2

)2
(y− µ1)′ (y− µ1) .

We apply the derivations from Example 2.3 and Example 2.4 to get the
Fisher information matrix I(µ, σ2) =

(
n
σ2 0
0 n

2σ4

)
and the Jeffreys prior

π
(
µ, σ2) ∝ ( 1

σ2

)3/2. Let’s check coverage for σ2. First, we integrate out
µ, ∫ ∞

−∞
L(µ, σ2; y)π

(
µ, σ2) dµ

∝
∫ ∞
−∞

(
1
σ2

)(n+3)/2
exp

{
− 1

2σ2 ‖y− µ1‖2
}
dµ

=
(

1
σ2

)(n+3)/2
exp

{
− 1

2σ2

(
y′y− nȳ2)}∫ ∞

−∞
exp

{
− n

2σ2 (µ− ȳ)2
}
dµ

∝
(

1
σ2

)(n+2)/2
exp

{
− 1

2σ2

(
y′y− nȳ2)} .

Then ∫ t

0

∫ ∞
−∞

π
(
µ, σ2 | y

)
dµdσ2 = 1

Γ(n2 )Γ(n2 ,
1
2t
(
y′y− nȳ2)).

I ran Algorithm 1 for N = 10,000, α = 0.95, µ = 0, and various values of
σ2 to get the results in Table 5.

Unfortunately, the multiparameter case is not so easy; and as we see in
Example 2.5, Jeffreys prior doesn’t perform nearly as well. Jeffreys considered
modifications of his prior to handle the multiparameter case better but never
developed a rigorous approach. For that, we turn to reference priors.
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n = 5 n = 10 n = 15 n = 20
σ2 coverage σ2 coverage σ2 coverage σ2 coverage
0.1 0.9241 0.1 0.938 0.1 0.9419 0.1 0.9463
0.5 0.9219 0.5 0.9377 0.5 0.946 0.5 0.9441
1.0 0.9245 1.0 0.94 1.0 0.9431 1.0 0.944
2.0 0.9236 2.0 0.9391 2.0 0.9446 2.0 0.9432
5.0 0.9182 5.0 0.9395 5.0 0.9403 5.0 0.9458

Table 5: Frequentist coverages for the variance of a normal distribution with
unknown mean and Jeffreys prior.

Reference Priors
If Jeffreys prior works well in the single parameter case, why not apply it to
parameters one at a time? In the reference prior approach (Berger, Bernardo,
1991), we build up a multiparameter prior by marginalizing the likelihood with
a conditional prior of fewer parameters to form a new integrated likelihood
function with only a single parameter, to which we can apply Jeffreys prior.

Suppose L(θ1, θ2; y) is a likelihood function of two variables. We fix θ1 and
use Jeffreys’ approach to derive a conditional prior π (θ2 | θ1). Then we integrate
out θ2,

LI(θ1; y) =
∫

Θ2

L(θ1, θ2; y)π (θ2 | θ1) dθ2,

to get the integrated likelihood function LI(·; y) of only a single variable. We
apply Jefferys’ approach again to the integrated likelihood function to get π (θ1)
and form the complete prior π (θ1, θ2) = π (θ1)×π (θ2 | θ1). If the prior π (· | θ1)
is improper, we can choose a sequence of compact subsets A1 ⊂ A2 ⊂ · · · ⊂ Θ2
such that limt→∞At = Θ2, apply the approach to At, and take the limit as
t→∞.

Let’s try this out on Example 2.5.
Example 2.6. [source] (Example 2.5 continued). We first integrate out µ
using the constant conditional prior,

LI(σ2; y) =
∫ ∞
−∞

L(µ, σ2; y)π
(
µ | σ2) dµ

∝
(

1
σ2

)n/2
exp

{
− 1

2σ2

(
y′y− nȳ2)}∫ ∞

−∞
exp

{
− n

σ2 (µ− ȳ)2
}
dµ

∝
(

1
σ2

)(n−1)/2
exp

{
− 1

2σ2

(
y′y− nȳ2)} .
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n = 5 n = 10 n = 15 n = 20
σ2 coverage σ2 coverage σ2 coverage σ2 coverage
0.1 0.9533 0.1 0.948 0.1 0.9504 0.1 0.9519
0.5 0.9528 0.5 0.9499 0.5 0.9524 0.5 0.9486
1.0 0.948 1.0 0.9503 1.0 0.9507 1.0 0.9484
2.0 0.9529 2.0 0.9504 2.0 0.9515 2.0 0.9487
5.0 0.9525 5.0 0.9507 5.0 0.9484 5.0 0.9511

Table 6: Frequentist coverages for the variance of a normal distribution with
unknown mean and reference prior.

Now, we differentiate LI(·; y) to find the Fisher information matrix,

∂

∂σ2 logLI(σ2; y) = −n− 1
2σ2 + 1

2

(
1
σ2

)2 (
y′y− nȳ2)

= 1
2σ2

{
1
σ2

(
y′y− nȳ2)− (n− 1)

}
.

Put Z = 1
σ2

(
y′y− nȳ2). Then Z follows a chi-squared distribution with

n− 1 degrees of freedom so that E[Z] = n− 1, E[Z2] = 2(n− 1) + (n− 1)2,
and

I(σ2) =
(

1
2σ2

)2 {
E[Z2]− 2(n− 1)E[Z] + (n− 1)2}

= n− 1
2σ4 .

Thus, we derive the reference prior π
(
µ, σ2) = 1

σ2 . Following Example 2.5,
we compute∫ t

0

∫ ∞
−∞

π
(
µ, σ2 | y

)
dµdσ2 = 1

Γ(n−1
2 )

Γ(n− 1
2 ,

1
2t
(
y′y− nȳ2)).

I reran the coverage simulation from Example 2.5 with this CDF and got
the results in Table 6. Comparing to Table 5, we can see that the reference
prior approach gives better results.

3 Noninformative Priors for Spatial Models
Let’s consider noninformative priors for the Gaussian process (1).

• Using a constant prior isn’t a viable option. In addition to the problem
of incoherence, the resulting posterior would be improper (Berger, 2006).
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We might consider truncating the parameter space to make the constant
prior proper, but that doesn’t solve the problem as inference would be
highly dependent on the truncation bounds.

• Certain modified forms of Jeffreys prior result in a proper posterior, but
the credible sets produced from the priors perform poorly (Ren et al.,
2012).

That brings us to the reference prior approach. Since the model has multi-
ple parameters, we’ll first integrate out β and σ2 using the conditional prior
π
(
β, σ2 | `, η

)
∝ 1

σ2 . Likelihood for Gaussian process (1) is given by

L(β, σ2, `, η; y) ∝
(
σ2)−n/2 |G|−1/2 exp

{
− 1

2σ2 (y−Xβ)′G−1 (y−Xβ)
}

where X = (x(s1), . . . ,x(sn))′, G = ηI + K(`), and K(`)ij = ψ` (‖si − sj‖).
Integrating likelihood with the conditional prior gives us

LI(`, η; y) ∝
∫ ∞

0

∫
Rp

L(β, σ2, `, η; y)π
(
β, σ2 | `, η

)
dβdσ2

∝
∫ ∞

0

(
σ2)−(n−p)/2 |G|−1/2|X′G−1X|−1/2 exp

{
− S2

2σ2

}(
1
σ2

)
dσ2

∝ |G|−1/2|X′G−1X|−1/2 (S2)−(n−p)/2 (3)

where

S2 = y′Ry and R = G−1 −G−1X
(
X′G−1X

)−1 X′G−1. (4)

After computing the Fisher information matrix for LI(·; y) and forming its Jef-
frey prior, we derive the complete prior

π
(
β, σ2, `, η

)
∝
(

1
σ2

)
|Σ(`, η)|1/2 (5)

where

Σ(`, η) =


tr
{

(R∂K
∂` )2} tr(R2 ∂K

∂` ) tr(R∂K
∂` )

∗ tr(R2) tr(R)

∗ ∗ n− p

 . (6)

For a detailed derivation, see Ren et al. (2012).
To test the performance of the reference prior, we’ll run the same simulations

used in Ren et al. (2012). Details of how to compute the integrals will be given
in §4.

Example 3.1. [source] To generate observations, I sample Gaussian pro-
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η = 0.01 η = 0.05
` = 0.2 ` = 0.5 ` = 1.0 ` = 0.2 ` = 0.5 ` = 1.0

` coverage 0.945 0.985 0.995 0.950 0.990 1.000
η coverage 0.885 0.980 0.995 1.000 0.995 1.000
σ2 coverage 0.990 0.995 0.980 0.975 0.985 0.985
β1 coverage 1.000 0.990 0.965 0.995 0.995 0.945

η = 0.1 η = 0.2
` = 0.2 ` = 0.5 ` = 1.0 ` = 0.2 ` = 0.5 ` = 1.0

` coverage 0.965 0.975 0.995 0.985 1.000 1.000
η coverage 1.000 0.975 0.995 0.995 0.970 0.990
σ2 coverage 1.000 0.985 0.985 0.970 0.985 0.980
β1 coverage 0.995 0.980 0.955 0.995 0.985 0.930

Table 7: Frequentist coverages for Gaussian process parameters on simulation
data sets with a constant regressor.

cess (1) with

σ2 = 1, x1(s) = 1, β1 = 1, and ψ`(d) = exp
{
−d
`

}
at 10 × 10 evenly spaced points on the interval [0, 1] × [0, 1]. I ran Algo-
rithm 1 with N = 200 and allowed ` and η to vary. The results are given
in Table 7.

Example 3.2 (source). For the next simulation, I modify the Gaus-
sian process in Example 3.1 to include additional regressors, x((u, v)) =(
1, u, v, u2, uv, v2)′ with β = (0.15,−0.65,−0.1, 0.9,−1.0, 1.2)′. Rerunning

the simulation experiment with the same values of ` and η gave the cover-
ages in Table 8.

To test prediction performance, we can use a modified form of Algorithm 1.
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η = 0.01 η = 0.05
` = 0.2 ` = 0.5 ` = 1.0 ` = 0.2 ` = 0.5 ` = 1.0

` coverage 0.995 1.000 0.960 1.000 1.000 0.910
η coverage 0.865 0.950 0.915 1.000 1.000 0.990
σ2 coverage 0.995 0.975 0.835 1.000 0.985 0.760
β1 coverage 1.000 0.925 0.765 0.960 0.915 0.775
β2 coverage 0.945 0.895 0.870 0.935 0.900 0.845
β3 coverage 0.990 0.885 0.850 0.960 0.915 0.895
β4 coverage 0.915 0.900 0.835 0.940 0.890 0.855
β5 coverage 0.970 0.860 0.890 0.970 0.935 0.870
β6 coverage 0.935 0.900 0.840 0.955 0.910 0.875

η = 0.1 η = 0.2
` = 0.2 ` = 0.5 ` = 1.0 ` = 0.2 ` = 0.5 ` = 1.0

` coverage 1.000 1.000 0.890 1.000 1.000 0.815
η coverage 0.990 1.000 1.000 0.990 1.000 1.000
σ2 coverage 0.990 0.980 0.835 0.985 0.975 0.835
β1 coverage 0.980 0.870 0.795 0.960 0.900 0.800
β2 coverage 0.925 0.910 0.895 0.965 0.925 0.850
β3 coverage 0.970 0.915 0.865 0.940 0.900 0.905
β4 coverage 0.940 0.920 0.900 0.940 0.915 0.885
β5 coverage 0.945 0.870 0.895 0.960 0.865 0.870
β6 coverage 0.965 0.885 0.860 0.940 0.925 0.940

Table 8: Frequentist coverages for Gaussian process parameters on simulation
data sets with polynomial regressors.
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η = 0.001 η = 0.01
` = 0.1 ` = 0.2 ` = 0.5 ` = 0.1 ` = 0.2 ` = 0.5

Bay coverage 0.919 0.951 0.942 0.939 0.953 0.944
ML coverage 0.812 0.905 0.934 0.838 0.912 0.919

η = 0.1 η = 0.2
` = 0.1 ` = 0.2 ` = 0.5 ` = 0.1 ` = 0.2 ` = 0.5

Bay coverage 0.929 0.943 0.932 0.936 0.937 0.938
ML coverage 0.847 0.893 0.920 0.853 0.893 0.903

Table 9: Frequentist coverages for Bayesian and maximum likelihood Gaussian
process predictions on simulation data sets.

Algorithm 2 Test accuracy of prediction credible sets produced with a prior

1: function prediction-coverage-test(θ̃, α)
2: cnt ← 0
3: N ← a large number
4: for i← 1 to N do
5: ỹ ← sample from P (· | θ̃)
6: t ←

∫ ỹ1
−∞

∫
P (y′ | θ)π(θ | ỹ2, . . . , ỹn)dθdy′

7: if α
2 < t < 1− α

2 then
8: cnt ← cnt+ 1
9: end if

10: end for
11: return cnt

N
12: end function

Example 3.3. [source] To generate observations, I sample from Gaussian
process (1) with σ2 = 1 and ψ`(d) = exp

{
− d2

2`2

}
. I sampled training

observations at 20 evenly spaced points on the interval [0, 1] and test ob-
servations at random points on the interval [0, 1]. I ran Algorithm 2 with
N = 100 and varied ` and η. Table 9 shows the coverage results for
Bayesian prediction distributions using the reference prior and maximum
likelihood prediction distributions.

4 Deterministic Bayesian Inference
The key component for deterministic prediction and inference is an accurate
approximation to the posterior distribution for ` and η that enables efficient
computation of integrals, π̃ (`, η | y) ≈ LI(`, η; y) × π (`, η) where π (`, η) ∝
|Σ(`, η)|1/2 and Σ(·) is defined in (6).
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Given π̃ (· | y), it’s relatively straightforward to derive approximations for
the marginal distributions

π (` | y) ≈
∫ ∞

0
π̃ (`, η | y) dη,

π (η | y) ≈
∫ ∞

0
π̃ (`, η | y) d`, and

π
(
σ2 | y

)
≈
∫ ∞

0

∫ ∞
0

Pπ
(
σ2 | y, `, η

)
π̃ (`, η | y) d`dη

and approximations for prediction distributions,

Pπ (Z(s) | y) ≈
∫ ∞

0

∫ ∞
0

Pπ (Z(s) | y, `, η) π̃ (`, η | y) d`dη.

Outline of Algorithm
Assume ϕ`(·) and ϕη(·) are strictly increasing functions onto (0,∞) with con-
tinuous derivatives. Put

f(u) = − logLI(ϕ`(u1), ϕη(u2); y)
− log π (ϕ`(u1), ϕη(u2))− log ϕ̇`(u1)− log ϕ̇η(u2).

(7)

f(·) is the negative log of the reparameterized posterior π (`, η | y). Approxima-
tion of exp(−f(·)) naturally leads to approximation and integration of π (`, η | y).

We’ll build an approximation in four steps.
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Algorithm 3 Build a multivariate polynomial to approximate exp(−f(·)) where
f(·) (7) is the negative negative log of the reparameterized posterior function
π (`, η | y)

1: Using a trust-region optimizer and exact equations for ∇f and ∇2f , mini-
mize f to find umap.

2: Let v1 and v2 denote two orthonormal eigenvectors of the Hessian at umap,
∇2f(umap). Find values a1 < 0 < b1 and a2 < 0 < b2 such that

− (f(umap + aivi)− f(umap)) = log ε1(ai) and
− (f(umap + bivi)− f(umap)) = log ε2(bi)

for i = 1, 2 and εi(·) small. These values bracket f(·) around a rectangular
region oriented along the eigenvectors v1 and v2 that contains most of the
probability mass.

3: Find monotonic cubic splines s1(·) and s2(·) such that si(0) = ai, si(0.5) =
0, and si(1) = bi for i = 1, 2.

4: Put

g(x) = exp {− (f (umap + s1(x1)v1 + s2(x2)v2)− f(umap))} . (8)

Using Chebyshev nodes and the eigenvectors v1 and v2 for a basis, adap-
tively build a sparse grid and interpolating polynomial to approximate g(·)
(and hence π (`, η | y)) over the region [0, 1]× [0, 1].

Proposition 7 and Proposition 9 from Ren et al. (2012) show that π (`, η | y)
is bounded as ` → 0 or η → 0 and derive O (·) functions for when ` → ∞ and
η →∞. Using suitable choices of ϕ`(·), ϕη(·), and εi(·), we can achieve bounds
for the probability mass outside of the bracketing region in Step 2. Following
Gu et al. (2018), we use the parameterization φ`(t) = φη(t) = exp(t). We’ll only
consider the simple case of εi fixed to some small constant, but other choices
could lead to tighter bounding.

We can use any decent root-finding algorithm (e.g., Newton’s method) for
Step 2; we use the monotonic cubic algorithm from Fritsch, Carlson (1980) for
Step 3. Step 1 and Step 4 are more complicated, and I break them down in
greater detail in the next sections.

Step 1: Trust-region Optimization
Let f : Rp → R denote a twice-differentiable objective function. Trust-region
methods are iterative, second-order optimization algorithms that produce a se-
quence {xk} where the kth iteration is generated by updating the previous
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iteration with a solution to the subproblem (Sorensen, 1982)

xk = xk−1 + sk and

sk = argmin
s

{
∇f(xk−1)′s+ 1

2s
′∇2f(xk−1)s

}
such that ‖s‖ ≤ δk.

The subproblem minimizes the second-order approximation of f at xk−1 within
the neighborhood ‖s‖ ≤ δk, called the trust region. Using the trust region, we
can restrict the second-order approximation to areas where it models f well. Ef-
ficient algorithms exist to solve the subproblem regardless of whether∇2f(xk−1)
is positive-definite, making trust-region methods well-suited for non-convex op-
timization problems (Moré, Sorensen, 1983). With proper rules for updating
δk and standard assumptions, such as Lipschitz continuity of ∇f , trust-region
methods are globally convergent. Moreover, if∇2f is Lipschitz continuous for all
x sufficiently close to a nondegenerate second-order stationary point x∗ where
∇2f(x∗) is positive-definite, then trust-region methods have quadratic local
convergence (Nocedal, Wright, 2006).

Algorithm 4 describes the trust-region algorithm we use for Step 1, and
Appendix A derives equations for evaluating the value, gradient, and Hessian
of the objective (7).
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Algorithm 4 Minimize an objective function f(·)
1: function minimize(f,x0)
2: tol ← tolerance
3: δ0 ← an initial trust-region radius
4: y0 ← f(x0)
5: g0 ← ∇f(x0)
6: H0 ← ∇2f(x0)
7: k ← 0
8: while ‖gk‖∞ > tol or Hk is not positive definite do
9: xk+1, yk+1, δk+1 ← compute-next-step(xk, yk, gk, Hk, δk)

10: gk+1 ← ∇f(xk+1)
11: Hk+1 ← ∇2f(xk+1)
12: k ← k + 1
13: end while
14: return xk, yk, Hk

15: end function
16: function compute-next-step(xk, yk, gk, Hk, δk)
17: δk+1 ← δk
18: while 1 do
19: sk ← argmins

{
g′ks+ 1

2s
′Hks

∣∣∣∣ ‖s‖ ≤ δk+1

}
. Solve the trust-region subproblem (Moré, Sorensen,

1983)
20: xk+1 ← xk + sk
21: yk+1 ← f(xk+1)
22: ρ ← yk+1−yk

g′
k
sk+ 1

2s
′
k
Hksk

. ρ measures the accuracy of the second-order Taylor ap-
proximation to f(·) within the trust-region neighbor-
hood, δk+1, about xk

23: if ρ < 1
4 then

24: δk+1 ← 1
4δk+1 . Shrink the trust region

25: else if ρ > 3
4 and ‖sk‖ = δk+1 then

26: δk+1 ← 2δk+1 . Expand the trust region
27: end if
28: if ρ > 1

4 then
29: return xk+1, yk+1, δk+1
30: end if
31: end while
32: end function

Step 4: Sparse Grid Approximation
We seek to approximate g(·) (8) by a polynomial g̃(·) that interpolates g(·) at
points in [0, 1]× [0, 1]. If we choose the points well, we can achieve high accuracy
with a minimal number of points, making g̃(·) cheaper to build and evaluate.

20



The simplest approach would be to interpolate at equispaced points, but
polynomials at equispaced points perform terribly (see Runge’s phenomenon).
Much better is to interpolate at Chebyshev nodes. Polynomials at Chebyshev
nodes have excellent approximation performance (Trefethen, 2019), but interpo-
lating on a dense grid would still be expensive. We can achieve better efficiency
if we interpolate on a sparse grid, and we can achieve even better efficiency if we
adaptively construct the sparse grid to avoid unnecessary evaluations in areas
that can be approximated well by lower-order polynomials.

Put

Xi =
{
xi1, . . . , x

i
mi

}
,

mi =
{

1 if i = 0,
2i−1 + 1 otherwise,

xij =
{ 1

2 if i = 0,
1
2

(
1− cos π(j−1)

mi−1

)
otherwise.

The Chebyshev-Gauss-Lobatto nodes,
{
Xi
}

, form a nested sequence of points,
Xi ⊂ Xi+1, that serve as a building block for constructing interpolations and
quadrature rules for sparse grids (Barthelmann et al., 2000; Klimke, 2006). Let
ψij(·) denote the unique (mi − 1)-degree polynomial where

ψij(xij′) =
{

1 if j = j′,

0 otherwise;

let V i denote the vector space spanned by the basis functions
{
ψij
}

for j =
1, . . . ,mi; and define ∆V 0 = V 0, ∆V i = V i − V i−1 for i > 0. We will build an
approximation using functions from vector spaces

W I =
⊕
i∈I

∆V i1 ⊗ · · · ⊗∆V id

where the index set I is required to be admissible: if i ∈ I and ik > 0, then
i − ek ∈ I. The vector spaces W I are a generalization of Smolyak sparse
grids and allow for different dimensions to have different levels of refinement
(Gerstner, Griebel, 2003).

To build the sparse grid, we follow the algorithm from Jakeman, Roberts
(2011) and greedily add indexes and nodes with the largest approximation errors
until a target accuracy is achieved. The algorithm adapts by both dimension
and locality.

Define xij =
(
xi1j1

, . . . , xidjd

)
, ψij(x) = ψi1j1

(x1) · · ·ψidjd
(xd), ∆X0 = X0, and

∆Xi = Xi \Xi−1.
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Algorithm 5 Build an interpolating polynomial on a sparse grid to approximate
a function f(·) on [0, 1]d . Continue to refine the sparse grid until errors, specified
by a function fε(·), are within a target tolerance.

1: function approximate(f , fε)
2: tol ← tolerance
3: G ← {} . Subgrids and surpluses for the sparse grid
4: F ← {} . Expanded subgrids not yet added to G
5: i ← 0
6: F ← F ∪ {expand-subgrid(G, f , fε, i)}
7: while 1 do
8: i, εij ← pick i, εij to maximize εij in F
9: if εij < tol then

10: return G
11: end if
12: G ← G ∪

{
(i, zi, εi)

}
13: F ← F \

{
(i, zi, εi)

}
14: for ifwd in {i+ ek | 1 ≤ k ≤ d} do
15: if for all k such that (ifwd)k > 0, ifwd − ek is in G then
16: F ← F ∪ {expand-subgrid(G, f , fε, ifwd)}
17: end if
18: end for
19: end while
20: end function
21: function expand-subgrid(G, f , fε, i)

. Compute surpluses and errors for every active refinement node
of the subgrid defined by i

22: zi ← 0
23: εi ← 0
24: for xij in ∆Xi1 ⊗ · · · ⊗∆Xid do
25: if is-active(G, i, j) or i = 0 then
26: y ← f(xij)
27: ỹ ← evaluate(G, xij)
28: zij ← y − ỹ
29: εij ← fε(y, ỹ,xij)
30: end if
31: end for
32: return

(
i, zi, εi

)
33: end function
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Algorithm 5 (continued)
34: function evaluate(G, x)

. Evaluate at x the polynomial interpolating the sparse grid G
35: res ← 0
36: for i, zi in G do
37: res ← res+

∑
zi

j
∈zi zijψ

i
j(x)

38: end for
39: return res
40: end function
41: function is-active(G, i, j)

. Determine if the refinement xij is active. A refinement is active if
it has at least one neighbor with an error that exceeds the cutoff
threshold.

42: τ ← cutoff threshold
43: for k such that ik > 0 do
44: ibwd ← i− ek
45: for εibwd

jbwd
in G do

46: if εibwd
jbwd

> τ and is-point-neighbor(ibwd, jbwd, j, k) then
47: return 1
48: end if
49: end for
50: end for
51: return 0
52: end function
53: function is-point-neighbor(i, j, j′, k)

. Determine if the refinement xi+ek

j′ neighbors the point xij . See
§4.2 of Jakeman, Roberts (2011) for details.

54: if there exists k′ 6= k such that jk′ 6= j′k′ then
55: return 0
56: else if ik ≤ 1 then
57: return 1
58: else
59: return

(
xikjk−1 < xik+1

j′
k

< xikjk

)
or
(
xikjk

< xik+1
j′

k
< xikjk+1

)
60: end if
61: end function

At umap, a second-order Taylor approximation to f(·) (7) gives us

f(umap + δ) ≈ f(umap) + 1
2δ
′(∇2f)(umap)δ.

If we use the eigenvectors v1 and v2 as a basis, we have

f(umap + δ1v1 + δ2v2) ≈ f(umap) + 1
2
(
ξ1δ

2
1 + ξ2δ

2
2
)
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Figure 4: Reparameterized log posterior for the Example 1.1 data set with ref-
erence prior

where ξ1 and ξ2 are the eigenvalues of ∇2f(umap). Thus, exp(f(·)) is approxi-
mately separable at umap along the eigenvectors; and hence, g(·) (8) is approx-
imately separable at 0.5,

g(0.5 + δ1, 0.5 + δ2) ≈ h1(0.5 + δ1)× h2(0.5 + δ2)

for some hd and δd small. We can use this observation to build a more efficient
approximation. Let h̃1(·) and h̃2(·) denote interpolations at Chebyshev nodes of
the functions g(·, 0.5) and g(0.5, ·). Then run Algorithm 5 with the target func-
tion g(x1,x2)

h̃1(x1)h̃2(x2) and the error function fε(y, ỹ, x1, x2) =
∣∣(y − ỹ)h̃1(x1)h̃2(x2)

∣∣.
Example 4.1. (Example 1.2 continued) I ran Algorithm 5 on the data
set from Example 1.1. Figure 4 shows contours for the log of the repa-
rameterized posterior function, and Figure 5 shows the sparse grid used to
approximate the reparameterized posterior.

Prediction Distributions
The sparse grid from Algorithm 5 naturally leads to a quadrature rule to ap-
proximate integration (Jakeman, Roberts, 2011). Let f(`, η) denote a function.
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Figure 5: Sparse grid used to interpolate the reparameterized posterior for the
Example 1.1 data set with reference prior

Put ϕ(u) = (ϕ`(u1), ϕη(u2))′. Then∫ ∞
0

∫ ∞
0
f(`, η)π (`, η | y) d`dη

≈
∫ ∞

0

∫ ∞
0

f(`, η) π̃ (`, η | y) d`dη

≈ 1
Z

∫ 1

0

∫ 1

0
f (ϕ(umap + s1(x1)v1 + s2(x2)v2))

g(x1, x2)ṡ1(x1)ṡ2(x2)dx1dx2

≈
∑
k

wkf(`k, ηk) (9)

where the points {(`k, ηk)′} are the transformed nodes of the sparse grid and
weights are derived from integrals of the basis functions with the separable
approximations, ∫ 1

0
ψij(x)h̃k(x)dx

for k = 1, 2.
Let s̃ denote unobserved locations. Then

Pπ (Z(s̃1), . . . , Z(s̃m) | y) ≈
∑
k

wk Pπ (Z(s̃1), . . . , Z(s̃m) | y, `k, ηk)
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gives us an approximation of the prediction distribution. Let’s derive a more
explicit formula for the conditional probability Pπ (· | y, `, η). Use y1 = y to
denote the observations and use y2 to denote possible values at the unobserved
locations s̃1, . . . , s̃m. Applying (3), we have

Pπ (y2 | y1, `, η) ∝
∫ ∞

0

∫
Rp

P
(
y1,y2 | β, σ2, `, η

)( 1
σ2

)
dβdσ2

∝
[
(y1,y2)R (y1,y2)′

]−(n+m−p)/2
,

where R is given by (4). Put R =
(
R11 R12
R′12 R22

)
. Then

(y1,y2)R (y1,y2)′ = y′1R11y1 + 2y′1R12y2 + y′2R22y2

= (y2 − ȳ2)′R22 (y2 − ȳ2) + b

where ȳ2 = −R−1
22 R

′
12y1 and b = y′1R11y1 − ȳ′2R22ȳ2.

σ2 Marginal
The marginal distribution of σ2 is given by

Pπ
(
σ2 | y

)
=
∫ ∞

0

∫ ∞
0

Pπ
(
σ2 | y, `, η

)
π (`, η | y) d`dη

≈
∑
k

wk Pπ
(
σ2 | y, `k, ηk

)
,

where {wk}, {`k}, and {ηk} are defined in (9). From (3), we have

Pπ
(
σ2 | y, `, η

)
∝
∫
Rp

L(β, σ2, `, η; y)π
(
β, σ2 | `, η

)
dβ

∝
(
σ2)−(n−p)/2 |G|−1/2|X′G−1X|−1/2 exp

{
− S2

2σ2

}(
1
σ2

)
∝
(

1
σ2

)(n−p)/2+1
exp

{
− S2

2σ2

}
. (10)

(10) is the unnormalized PDF of an inverse-gamma distribution. Normalizing
gives us

Pπ
(
σ2 | y, `, η

)
=
(
S2/2

)(n−p)/2
Γ((n− p)/2)

(
1
σ2

)(n−p)/2+1
exp

{
− S2

2σ2

}
.

β Marginals
Similarly, to compute the posterior distribution of a particular regressor βj , we
have

Pπ (βj | y) =
∫ ∞

0

∫ ∞
0

Pπ (βj | y, `, η)π (`, η | y) d`dη
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where

Pπ (βj | y, `, η) ∝
∫ ∞

0

∫
Rp−1

(
1
σ2

)n/2+1

exp
{
− 1

2σ2 (y−Xβ)′G−1 (y−Xβ)
}
dβ/jdσ

2

∝
∫ ∞

0

∫
Rp−1

(
1
σ2

)n/2+1

exp
{
− 1

2σ2

(
β − β̄

)′X′G−1X
(
β − β̄

)}
exp

{
− 1

2σ2

(
y′G−1y− β̄X′G−1Xβ̄

)}
dβ/jdσ

2

∝
∫ ∞

0

(
1
σ2

)(n−p+1)/2+1
exp

{
− 1

2σ2
1(

A−1)
jj

(
βj − β̄j

)2}

exp
{
− 1

2σ2

(
y′G−1y− β̄X′G−1Xβ̄

)}
dσ2

∝
∫ ∞

0

(
1
σ2

)(n−p+1)/2+1
exp

{
− 1

2σ2 #1
}
dσ2

∝ (#1)−(n−p+1)/2

and
A = X′G−1X
β̄ = A−1X′G−1y

#1 = 1(
A−1)

jj

(
βj − β̄j

)2 + y′G−1y− β̄′Aβ̄

= 1(
A−1)

jj

(
βj − β̄j

)2 + S2.

We recognize Pπ (βj | y) as being a t-distribution with n−p degrees of freedom,

mean βj , and scale sβj =
{ (A−1)

jj
S2

n−p

}1/2

.

`, η Marginals
Algorithm 5 gives us an interpolating function that is inexpensive to evalu-
ate and accurately approximates the reparameterized posterior π (u1, u2 | y) =
π (ϕ`(u1), ϕη(u2) | y) ϕ̇`(u1)ϕ̇η(u2). Now,

π (u1 | y) =
∫
π (u1, u2 | y) du2

≈
∑
k

wk π̃ (u1, tk | y) ,
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where {wk} and {tk} can be chosen by the Gauss-Legendre quadrature rule for
the interval determined by the bracketing region in Step 2 of Algorithm 3. If we
evaluate π̃ (u1 | y) at Chebyshev nodes across the range of u1 in the bracketing
region, then we obtain a polynomial that approximates π (u1 | y). π (u2 | y) can
be similarly approximated using Chebyshev nodes.

If the error bounds from Step 2 are tight enough, the polynomial approxi-
mations for π (u1 | y) and π (u2 | y) will be suitable for estimating the CDFs.
But since they cut off integration outside of the bracketing region, they won’t
accurately capture endpoint behavior and shouldn’t be used for estimating mo-
ments. For example, π (η | y) has infinite mean, which won’t be reflected by the
polynomial approximation.

5 Real Data Analysis
Let’s apply the algorithms from §4 to real data.

5.1 Soil Carbon-to-Nitrogen
We’ll first look at a data set from Schabenberger, Pierce (2001) of carbon-to-
nitrogen ratios sampled across an agricultural field before and after tillage. The
after-tillage data was analyzed by Ren et al. (2012) and De Oliveira (2007) using
random sampling algorithms and a Gaussian process of the form (1) with

E {Z(s)} = β1 and ψ`(d) = exp
{
−d
`

}
.

We’ll use the same model and data set with our deterministic algorithms. When
we fit a sparse grid to approximate the posterior and marginalize, we get these
values for the medians

(β1)med = 10.86, `med = 62.54, ηmed = 0.44, and σ2
med = 0.24.

Figure 6 plots the sparse grid constructed by Algorithm 5; Figure 7 plots the
posterior marginalizations for β1, `, η, and σ2; and Figure 8 plots carbon-to-
nitrogen predictions and credible sets across the agricultural field. [source]

5.2 Meuse River
Next, we’ll look at a data set from the sp R-library containing 155 measure-
ments of zinc concentration (ppm) collected in a flood plain of the river Meuse
(Pebesma, Bivand, 2005). The data was previously analyzed by Kazianka, Pilz
(2012) using a Gaussian process with a sampling algorithm. We’ll use a sim-
ilar model but with the deterministic algorithms from §4. We model log zinc
concentration as a Gaussian process of the form (1) with

E {Z(s)} = β1 + β2x1(s) and ψ`(d) = exp
{
−d
`

}
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Figure 6: Sparse grid used to interpolate the posterior of the soil data set
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Figure 7: Marginalizations of the posterior distribution of the soil data set
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Figure 8: Prediction means and credible sets of soil carbon-to-nitrogen ratios
for soil data set with sampling locations
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Figure 9: Sparse grid used to interpolate the posterior of the Meuse data set

where x1(s) is the square root of the distance of the flood plain sampling loca-
tion, s, to the river Meuse. After fitting the model, we compute medians

(β1)med = 6.99, (β2)med = −2.56, `med = 0.22, ηmed = 0.31, and σ2
med = 0.16.

Figure 9 plots the sparse grid constructed by Algorithm 5; Figure 10 plots the
posterior marginalizations for β1, β2, `, η, and σ2; and Figure 11 plots log zinc
predictions and credible sets across the flood plain. [source]

5.3 Performance Analysis
To get a sense of the cost of the algorithms, I measured how long it took to
apply the steps of Algorithm 3 to the soil and Meuse data sets for varying
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Figure 10: Marginalizations of the posterior distribution of the Meuse data set
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Figure 11: Prediction means and credible sets of log zinc concentration for
Meuse data set with sampling locations
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error tolerances. I computed the results using an 8-core AMD Ryzen 9 laptop.
Table 10 and Table 11 summarize the performance results and provide the 25th,
50th, and 75th percentiles for the `, η, and σ2 distributions to help show how
the tolerance affects accuracy. [source]
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` Percentile η Percentile σ2 Percentile
tol grid size elapse (s) 25th 50th 75th 25th 50th 75th 25th 50th 75th
1× 10−2 249 1.37 42.00 63.50 106.92 0.31 0.45 0.60 0.20 0.25 0.31
1× 10−3 252 1.32 42.88 62.55 104.56 0.32 0.44 0.61 0.20 0.25 0.32
1× 10−4 798 2.86 42.88 62.55 104.56 0.32 0.44 0.61 0.20 0.25 0.32
1× 10−5 2218 6.67 42.88 62.54 104.57 0.32 0.44 0.61 0.20 0.25 0.32
1× 10−6 3415 9.82 42.88 62.54 104.57 0.32 0.44 0.61 0.20 0.25 0.32

Table 10: Provide distribution percentiles and measure elapse time for fitting a sparse grid to the soil data set described in
§5.1 using various tolerances

` Percentile η Percentile σ2 Percentile
tol grid size elapse (s) 25th 50th 75th 25th 50th 75th 25th 50th 75th
1× 10−2 215 0.69 0.17 0.22 0.30 0.17 0.31 0.50 0.13 0.16 0.20
1× 10−3 416 1.03 0.17 0.22 0.30 0.17 0.31 0.49 0.13 0.16 0.20
1× 10−4 1193 2.42 0.17 0.22 0.30 0.17 0.31 0.50 0.13 0.16 0.20
1× 10−5 2358 4.51 0.17 0.22 0.30 0.17 0.31 0.50 0.13 0.16 0.20
1× 10−6 8666 17.10 0.17 0.22 0.30 0.17 0.31 0.50 0.13 0.16 0.20

Table 11: Provide distribution percentiles and measure elapse time for fitting a sparse grid to the Meuse data set described in
§5.2 using various tolerances
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6 Discussion
I presented deterministic algorithms for fully Bayesian prediction and inference
for spatial models. In comparison to sampling methods such as MCMC, I would
expect the algorithms to provide more reproducible results and require less
tuning, making a more turnkey approach to analysis possible.

An area of future work could be to extend the algorithms to handle the
Gaussian process models used in model emulation and calibration. In contrast to
spatial Gaussian process models, models for emulation and calibration typically
assume each dimension of the input space has a different scale and use a product
covariance function (Sacks et al., 1989; Gu, 2019),

cov {Z(s), Z(u)} = σ2
d∏
k=1

ψ`k
(| sk − uk |).

Paulo (2005) and Gu, Berger (2016) derived reference priors for separable covari-
ance functions with distinct length parameters. Provided d is not too large, it
may be possible to adopt the algorithms from §4 to work for this case to achieve
deterministic fully Bayesian results. Additionally, certain modifications, such
as using second-order information at interpolation points or assuming that the
posterior is separable along the eigenvectors of its optimum’s Hessian, could
make the algorithms more efficient and larger values of d possible.

A Appendix: Posterior Derivatives
We will derive equations to compute the value, gradient, and Hessian of the
negative log posterior π (`, η | y). From (3) and (5), we have

π (`, η | y) ∝ LI(`, η; y)× π (`, η)

∝ |G|−1/2|X′G−1X|−1/2 (S2)−(n−p)/2 |Σ|1/2.

Put φ1 = `, φ2 = η, A = X′G−1X, and define

f(φ) = 1
2 log|G|+ 1

2 log|A|+ n− p
2 logS2 − 1

2 log |Σ|.

Let LG denote the Cholesky factorization of G, G = LGL
′
G. Then

A = X′
(
LGL

′
G

)−1 X
= X′L′−1

G L−1
G X

=
(
L−1
G X

)′ (
L−1
G X

)
.

34



Let Q and RA denote the QR factorization of L−1
G X. Then

A =
(
L−1
G X

)′ (
L−1
G X

)
= (QRA)′ (QRA)
= R′AQ′QRA

= R′ARA.

Put H = G−1XA−1X′G−1 and FH = R′−1
A X′G−1. Applying to R (4), we

have H = F ′HFH and R = L′−1
G L−1

G + F ′HFH .

Gradient
Put

#1 = 1
2 log|G|, #2 = 1

2 log|A|, #3 = n− p
2 logS2, and #4 = 1

2 log|Σ|.

Applying Jacobi’s formula, d
dt |B(t)| = |B| tr

{
B−1 dB

dt

}
, we have

∂#1
∂φs

= 1
2 tr

{
G−1 ∂G

∂φs

}
,

∂#2
∂φs

= 1
2 tr

{
A−1 ∂A

∂φs

}
,

∂#3
∂φs

= n− p
2

1
S2

∂S2

∂φs
= n− p

2
1
S2 y′ ∂R

∂φs
y, and

∂#4
∂φs

= 1
2 tr

{
Σ−1 ∂Σ

∂φs

}
.

Using the formula for differentiating an inverse matrix, d
dtB(t)−1 = −B−1 dB

dt B
−1,

we derive the derivative of A,

∂A

∂φs
= X′ ∂G−1

∂φs
X

where ∂G−1

∂φs
= −G−1 ∂G

∂φs
G−1. Differentiating R gives us

∂R

∂φs
= ∂

∂φs

(
G−1 −H

)
= ∂G−1

∂φs
− ∂H
∂φs
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and

∂H
∂φs

= ∂

∂φs

(
G−1XA−1X′G−1)

= −G−1 ∂G
∂φs

H−H ∂G
∂φs

G−1 −G−1XA−1 ∂A

∂φs
A−1XG−1

= −G−1 ∂G
∂φs

H−H ∂G
∂φs

G−1

+ G−1XA−1
(

X′G−1 ∂G
∂φs

G−1X
)
A−1XG−1

= −G−1 ∂G
∂φs

H−H ∂G
∂φs

G−1 + H ∂G
∂φs

H

= −
(

G−1 − 1
2H
)
∂G
∂φs

H−H ∂G
∂φs

(
G−1 − 1

2H
)
.

Put #5 = tr
{
R∂K

∂`

}
. Then(

∂Σ
∂φs

)
11

= ∂

∂φs
tr
{

#52} = 2 tr
{

#5∂#5
∂φs

}
,(

∂Σ
∂φs

)
12

= ∂

∂φs
tr
{
R2 ∂K

∂`

}
= tr

{
∂R2

∂φs

∂K
∂`

+R2 ∂2K
∂φs∂`

}
,(

∂Σ
∂φs

)
13

= tr
{
∂#5
∂φs

}
,(

∂Σ
∂φs

)
22

= tr
{
∂R2

∂φs

}
,(

∂Σ
∂φs

)
23

= tr
{
∂R

∂φs

}
,(

∂Σ
∂φs

)
33

= 0,

and

∂#5
∂φs

= ∂

∂φs

(
R
∂K
∂`

)
= ∂R

∂φs

∂K
∂`

+R ∂2K
∂φs∂`

and

∂R2

∂φs
= ∂R

∂φs
R+R ∂R

∂φs
.
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Hessian
Computing second derivatives we have

∂2#1
∂φs∂φt

= ∂

∂φs

(
1
2 tr

{
G−1 ∂G

∂φt

})
= 1

2 tr
{
−G−1 ∂G

∂φs
G−1 ∂G

∂φt
+ G−1 ∂2G

∂φs∂φt

}
,

∂2#2
∂φs∂φt

= ∂

∂φs

(
1
2 tr

{
A−1 ∂A

∂φt

})
= 1

2 tr
{
−A−1 ∂A

∂φs
A−1 ∂A

∂φt
+A−1 ∂2A

∂φs∂φt

}
,

∂2#3
∂φs∂φt

= ∂

∂φs

(
n− p

2
1
S2

∂S2

∂φt

)
= n− p

2

(
− 1
S4

∂S2

∂φs

∂S2

∂φt
+ 1
S2

∂2S2

∂φs∂φt

)
, and

∂2#4
∂φs∂φt

= ∂

∂φs

(
1
2 tr

{
Σ−1 ∂Σ

∂φt

})
= 1

2 tr
{
−Σ−1 ∂Σ

∂φs
Σ−1 ∂Σ

∂φt
+ Σ−1 ∂2Σ

∂φs∂φt

}
.

For the second derivative of A, we have

∂2A

∂φs∂φt
= ∂

∂φs

(
−X′G−1 ∂G

∂φt
G−1X

)
= X′G−1 ∂G

∂φs
G−1 ∂G

∂φt
G−1X + X′G−1 ∂G

∂φt
G−1 ∂G

∂φs
G−1X

−X′G−1 ∂2G
∂φs∂φt

G−1X.

Differentiating R a second time gives us

∂2R

∂φs∂φt
= ∂

∂φs

(
∂G−1

∂φt
− ∂H
∂φt

)
= ∂2G−1

∂φs∂φt
− ∂2H
∂φs∂φt
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where

∂2G−1

∂φs∂φt
= ∂

∂φs

(
−G−1 ∂G

∂φt
G−1

)
= G−1 ∂G

∂φs
G−1 ∂G

∂φt
G−1 + G−1 ∂G

∂φt
G−1 ∂G

∂φs
G−1

−G−1 ∂2G
∂φs∂φt

G−1 and

∂2H
∂φs∂φt

= ∂

∂φs

(
−
(

G−1 − 1
2H
)
∂G
∂φt

H−H∂G
∂φt

(
G−1 − 1

2H
))

= #D2H1 + #D2H2 + #D2H3

and

#D2H1 = −
(
∂G−1

∂φs
− 1

2
∂H
∂φs

)
∂G
∂φt

H−H∂G
∂φt

(
∂G−1

∂φs
− 1

2
∂H
∂φs

)
,

#D2H2 = −
(

G−1 − 1
2H
)
∂G
∂φt

∂H
∂φs
− ∂H
∂φs

∂G
∂φt

(
G−1 − 1

2H
)
, and

#D2H3 = −
(

G−1 − 1
2H
)

∂2G
∂φs∂φt

H−H ∂2G
∂φs∂φt

(
G−1 − 1

2H
)
.

Computing the second derivative of Σ, we have(
∂2Σ
∂φs∂φt

)
11

= ∂

∂φs

(
2 tr

{
#5∂#5

∂φt

})
= 2 tr

{
∂#5
∂φs

∂#5
∂φt

+ #5 ∂2#5
∂φs∂φt

}
,(

∂2Σ
∂φs∂φt

)
12

= ∂

∂φs

(
tr
{
∂R2

∂φs

∂K
∂`

+R2 ∂
2K

∂φt∂`

})
= tr

{
∂2R2

∂φs∂φt

∂K
∂`

+ ∂R2

∂φs

∂2K
∂φt∂`

+ ∂R2

∂φs

∂2K
∂φs∂`

+R2 ∂3K
∂φs∂φt∂`

}
,(

∂2Σ
∂φs∂φt

)
13

= tr
{
∂#5
∂φs

φt

}
,(

∂2Σ
∂φs∂φt

)
22

= tr
{
∂2R2

∂φs∂φt

}
, and(

∂2Σ
∂φs∂φt

)
23

= tr
{

∂2R

∂φs∂φt

}
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and

∂2#5
∂φs∂φt

= ∂

∂φs

(
∂R

∂φt

∂K
∂`

+R ∂2K
∂φt∂`

)
= ∂2R

∂φs∂φt

∂K
∂`

+ ∂R

∂φs

∂2K
∂φt∂`

+ ∂R

∂φt

∂2K
∂φs∂`

+R ∂3K
∂φs∂φt∂`

and

∂2R2

∂φs∂φt
= ∂

∂φs

(
∂R

∂φt
R+R ∂R

∂φt

)
=
(

∂2R

∂φs∂φt
R+R ∂2R

∂φs∂φt

)
+
(
∂R

∂φs

∂R

∂φt
+ ∂R

∂φt

∂R

∂φs

)
.
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